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Multi-view Stereo

Im et al., DPSNet: End-to-end Deep Plane Sweep Stereo, ICLR 2019

Advantage: complete 
Disadvantage: higher depth error and lower quality 3D 
structure compared to conventional MVS !

Furukawa et al., Multi-View Stereo: A Tutorial
Schonberger et al., Pixelwise View Selection for Unstructured Multi-View Stereo, ECCV 2016



Depth and Surface Normal
• Surface normal predictions are usually more robust on low-texture (often plane) regions.  
• Depth and surface normal could benefit each other in joint training, as shown in GeoNet, NAS, 

CNM.

Qi et al., GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation, CVPR 2018
Kusupati et al., Normal Assisted Stereo Depth Estimation, CVPR 2020
Long et al., Occlusion-aware Depth Estimation with Adaptive Normal Constraints, ECCV 2020

Our motivation: explicit modeling of planar structure within DeepMVS!



Confidence-based Iterative Depth-Normal Solver 
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• Energy potential construction based 
on locally planar assumption

• Iterative optimization over depth and 
surface normal subproblems

• Closed-form solutions (thus 
differentiable) for both subproblems
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Confidence-based Iterative Depth-Normal Solver 
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on locally planar assumption
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• Local neighbors for each pixel 
determined by predefined checkerboard
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Confidence-based Iterative Depth-Normal Solver 
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• D-Step: fix normal and update depth
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Confidence-based Iterative Depth-Normal Solver 

confN

n

n

D-step

N-step

Iteratively

1

2
confD

Init normal

Init depth

• N-step: fix depth and update normal

output depth

output normal



Confidence-based Iterative Depth-Normal Solver 
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• Energy potential construction based 
on locally planar assumption

• Iterative optimization of depth and 
surface normal subproblems

• Closed-form solutions (thus 
differentiable) for both subproblems

output depth

output normal
• Input: initial depth, normal, confidence maps 

of depth and normal
• Output: refined depth and normal



Validating the solver as a post-processing module

Image

Input depth

Output depth

• COLMAP MVS is used to obtain the 
initial depth and surface normal.

• Higher confidence is assigned to 
pixels with valid depth and normal 
projections at fusion.

• Our solver effectively propagates 
the reliable geometry into missing 
parts (e.g. low-texture regions) 
and largely improves 
reconstruction completeness.



Deep Multi-view Stereo System
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Deep Multi-view Stereo System

• Cost volume based initial depth 
and surface normal prediction

• Learning confidence prediction of 
the initial geometry 

• Joint training by integrating the 
differentiable iterative solver



Deep Multi-view Stereo System

• Groundtruth confidence at training
• GT confidence is calculated by 

comparing the predictions with 
groundtruth depth/normal.

• Hybrid confidence at inference
• Deep confidence + Geometric 

confidence.
• Deep confidence is obtained by 

confidence branches.
• Geometric confidence is obtained by 

depth reprojection check.



Deep Multi-view Stereo System

• w/o. solver: 
rough geometry on both regions

• w. solver only at training:
accurate in textured region, “noisy” 
in texture-less region

• w. solver at training and inference: 
fine geometry on both regions



Results - MVS System - Depth

ScanNet dataset

RGB-D Scenes V2 dataset



Results - MVS System – Surface Normal

• We test our final surface normals on 
ScanNet dataset and achieves state-
of-the-art performance on the task of 
surface normal estimation.



Results - MVS System - Reconstruction

• Direct TSDF fusion results using 
predicted depths on ScanNet scenes.

• Our method reconstructs finer 
geometry details with less outliers.
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