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In this document, we provide a list of supplementary ma-
terials that accompany the main paper.

A. Detailed Derivations of the Proposed Solver

A.1. Preliminaries

As discussed in the main paper, we solve the depth
map and normal map with two separate suboptimization
steps with respect to the total energy. Each step contains
a plane-based propagation with slanted planes. Recall that
P (x, d, n) denotes the slanted plane at pixel coordinate x
generating by spanning a plane from the corresponding 3D
points recovered from d and x and its surface normal n. In
practice we parameterize the normal to be n = (a, b,−1),
which enables closed-form computation in the normal up-
date step (N-step). Let (p, q, z) denotes the 3D coordinate
of the points recovered from d and x = (u, v)T at the frame
coordinate system:
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where K is the camera intrinsic parameter, x = (u, v)T

is the 2D pixel coordinate and (ũ, ṽ, 1)> = K−1(u, v, 1)>

is the normalized homogeneous coordinate. Then, the plane
equation of P (xi, di, ni) with ni = (ai, bi,−1) and the re-
covered 3D points (pi, qi, zi) can be written as follows:

ai(p− pi) + bi(q − qi)− (z − zi) = 0. (2)

At plane-based propagation, the propagated depth di→j

(dj→i) is computed by projecting the slanted plane at i (j)
onto the pixel j (i). We give the derivation of di→j here:

ai(pj − pi) + bi(qj − qi)− (zj − zi) = 0 (3)
⇔ai(ũjdi→j − pi) + bi(ṽjdi→j − qi)− (di→j − zi) = 0

(4)

⇔di→j =
aipi + biqi − zi
aiũj + biṽj − 1

=
aiũi + biṽi − 1

aiũj + biṽj − 1
di (5)

Here di→j is non-linearly dependent upon the depth di and
the surface normal ni = (ai, bi,−1). As there exist second-
order terms aidi and bidi in the denominator, a quadratic
energy over both di and ni is infeasible even when the al-
gebraic formulation is employed. Thus, closed-form so-
lution cannot be acquired when the data term and plane-
based structural term Ei→j

1 are jointly optimized over di
and ni. This motivates us to employ iterative suboptimiza-
tion in the solver to acquire close-form solution, which can
further benefit our deep MVS system with end-to-end joint
training, as discussed in the main paper.

Before introducing the details of the two update steps of
the proposed solver, let us take a step further on the formula-
tion of jointly solving depths and surface normals. We want
to note that it is possible to formulate closed-form solution
by substitution of variables when only the surface normal
data term is employed. This can be achieved by parameter-
izing the plane equation in Eq. (2) as aip+biq−(z−ti) = 0,
where ti = zi−aipi−biqi = (1−aiũi−biṽi)di. When the
depth data term is not included, by employing the algebraic
form we can get a 3x3 linear system with respect to ai, bi
and ti. However, we empirically observe that the depth data
term is extremely beneficial in practice.

A.2. Closed-form Solution

As discussed in the main paper, we employ suboptimiza-
tion over the depth map and the surface normal map itera-
tively. This enables closed-form solution in both steps.

1Ej→i does not include the surface normal ni in its formulation, and
thus can only be used when only depth map is required to be solved.



Depth Update (D-step). At the depth update step (D-
step), we fix the surface normal map and solve for the opti-
mal depth map d∗. L2 distance between the optimized depth
and the propagated depth dj→i from neighboring pixels are
used in the plane-based structural term. The objective is
written as follows (Eqs. (4)(5) in the main paper):

min
d
Etotal = min

d
Ed (6)

Ed = α
∑
i

ci(di − d̂i)2 +
∑
i

∑
j∈N(i)

cjwij(di − dj→i)
2.

(7)

As discussed in the main paper, we assume fixed neigh-
borhoods to enable parallelization of the solver. Thus,
the propagated depth dj→i is the projection of the plane
P (xj , d̂j , n̂j) at pixel i:

dj→i =
âj ũj + b̂j ṽj − 1

âj ũi + b̂j ṽi − 1
d̂j (8)

Set the first-order derivative to zero we can easily derive the
optimal depth d∗i for each pixel:

d∗i =
αcid̂i +

∑
j∈N(i) ciwijdj→i

αci +
∑

j∈N(i) ciwij
. (9)

Surface Normal Update (N-step). At the surface normal
update step, we fix the depth map and solve for the optimal
surface normal n∗. The objective is written as follows (Eqs.
(6)(7) in the main paper):

min
n
Etotal = min

n
En (10)

En = α
∑
i

ci||ni − n̂i||2

+
∑
i

∑
j∈N(i)

cjwijDn(dj , P (xi, di, ni)).
(11)

HereDn is a distance function defined over dj and the plane
P (xi, di, ni) being optimized. Note that because di→j is
non-linearly dependent over ni as shown in Eq. (5) in this
supplementary material, we cannot directly use L2 distance
as in the D-step. Instead, we employ the algebraic formu-
lation of the plane equation and directly formulate the dis-
tance function Dn as the square of the LHS of Eq. (3) in
this supplementary material:

Dn(dj , P (xi, di, ni)) = [ai(pj−pi)+bi(qj−qi)−(zj−zi))]2.
(12)

Because the depth map is fixed in the N-step, the only two
unknown variables are ai and bi, which represent the sur-
face normal ni = (ai, bi,−1). Note that this parameteri-
zation is feasible because all visible surfaces are facing the
position where the camera center locates. However, numer-
ical problems may occur when there exist ill-posed cases
with surfaces that are nearly parallel to the corresponding
camera rays. Thus, we clip the absolute value of the solved
ai and bi with a threshold 20.0. This operation is empiri-
cally crucial to stabilize the end-to-end training process.

By setting the first-order derivatives to zero we can get a
2x2 linear system over a∗i and b∗i , where the optimal surface
normal n∗i is parameterized with n∗i = (a∗i , b

∗
i ,−1). The

coefficients are listed as follows:

[
A11 A12

A21 A22

] [
a∗i
b∗i

]
=

[
B1

B2

]
(13)

A11 = αci +
∑

j∈N(i)

cjwij(pj − pi)2 (14)

A22 = αci +
∑

j∈N(i)

cjwij(qj − qi)2 (15)

A12 = A21 =
∑

j∈N(i)

cjwij(pj − pi)(qj − qi) (16)

B1 = αciâi +
∑

j∈N(i)

cjwij(pj − pi)(zj − zi) (17)

B2 = αcib̂i +
∑

j∈N(i)

cjwij(qj − qi)(zj − zi) (18)

In the final step, normalization is applied on the output
surface normal to get the final prediction with standard pa-
rameterization:

n = (
a√

a2 + b2 + 1
,

b√
a2 + b2 + 1

,− 1√
a2 + b2 + 1

).

(19)

A.3. Extension: Incorporating Customized Depth
Confidence and Normal Confidence

While we present all the derivations with a single con-
fidence map ci for simplicity, a separate depth confidence
map cd and surface normal confidence map cn can be used
in practice to further improve the solver. Employing those
separate customized confidence maps will change the data
term (Eq. (2) in the main paper) into the formulation below:

Edata =
∑
i

cd,i(di − d̂i)2 +
∑
i

cn,i||ni − n̂i||2, (20)

where cd,i and cn,i denotes the per-pixel depth and sur-
face normal confidence respectively. Furthermore, the con-
fidence used in the plane-based structural term can also be
monitored by the separate confidence maps.



Separate Confidence Maps used in the D-step. When
the depth confidence and normal confidence are used
jointly, the final formulation ofEd becomes the form as fol-
lows:

Ed = α
∑
i

cd,i(di − d̂i)2

+
∑
i

∑
j∈N(i)

cd,jcn,jwij(di − dj→i)
2.

(21)

Note that both the depth confidence cd,j and normal confi-
dence cn,j are used in the plane-based structural term. This
is due to the fact that the quality of the propagated depth
dj→i depends on both d̂j and n̂j .

Separate Confidence Maps used in the N-step. As for
the surface normal update step, because Ei→j is employed,
n̂j is non-relevant to the computation so the plane-based
structural term will not be affected by cn,j . However, since
the depth map is fixed here and the computation of di→j

depends on the quality of d̂i, we multiply the plane-based
structural term with the depth confidence of the studied
pixel cd,i. The final formulation of En is written as follows:

En = α
∑
i

cn,i||ni − n̂i||2

+
∑
i

cd,i
∑

j∈N(i)

cd,jwijDn(dj , P (xi, di, ni)).
(22)

Closed-form solution can be easily derived for the mod-
ified objectives in Eq. (21) and Eq. (22) following the pre-
vious discussion.

In our implementation, the depth confidence map and
normal confidence map are jointly predicted by the cost-
volume based neural networks. The supervision is acquired
by computing the relative depth error and normal angle er-
ror, as described in the main paper. At inference, the hybrid
confidence map combining the deep depth confidence and
the geometric confidence is used as the depth confidence
map, while the normal confidence only employs the deep
normal confidence prediction.

B. Network Architectures
We follow prior works [2, 3] to design the initial depth,

surface normal, and confidence estimation networks.
For the depth and normal branches, we use the same

network architectures as [3] without the consistency mod-
ule. Specifically, the target and reference images are first
encoded to get the feature maps. Then we use plane sweep-
ing with 64 hypothesis planes to build the feature cost vol-
ume. The 3D CNNs and 2D context CNNs are applied on
the cost volume to aggregate and regularize the cost infor-
mation. The soft argmin is used to regress the final depth

values from the final cost volume. The cost volume infor-
mation is also utilized for the multi-view surface normal
estimation. The intermediate cost volume features are con-
catenated with the world coordinates of every voxel, and
then transformed by several 3D CNNs to get 8 cost volume
slices. Each slice is processed by 7 shared layers of 2D con-
volutions of dilated 3 × 3 kernels. The output of all slices
are summed and normalized to get the final surface normal.
We recommend the reader to refer to [3] for more details.

For the confidence branch, we input multiple sources
to the network to better estimate the confidence. To pre-
dict the depth confidence, we utilize target image features,
homography-warped reference image features using cur-
rently predicted depth, cost volume features before softmax,
and the predicted depth. As illustrated in Figure 1, these in-
puts are processed by three mini-branches, and each mini-
branch contains two or three layers of 3 × 3 convolutions.
To be specific, the first branch (target image feature + pre-
dicted depth) consists of two 3×3 convolution layers whose
output channels are both 16. The second branch (target im-
age feature + warped reference image feature) has also two
3 × 3 convolution layers whose output channels are both
32. The third branch (cost volume feature) consists of three
3×3 convolution layers with [64, 32, 1] as each layer’s out-
put channel number. The outputs from three mini-branches
are then concatenated, and five dilated 3 × 3 convolution
layers with output channels [64, 64, 64, 32, 1] and dilations
[1, 2, 4, 1, 1], followed by the final sigmoid activation, are
applied to jointly predict the depth confidence. For surface
normal confidence, we use target image features, interme-
diate features from the previously discussed 8 cost volume
slices, and the predicted surface normal, as shown in Fig-
ure 2. These inputs are processed by two mini-branches,
then concatenated and used to jointly predict the surface
normal confidence. The first branch consists of two 3 × 3
convolution layers with both 16 output channels, and the
second branch has also two 3 × 3 convolution layers with
both 32 output channels. Then the outputs from these two
mini-branches are concatenated and processed by five di-
lated 3× 3 convolution layers with output channels [64, 64,
64, 32, 1] and dilations [1, 2, 4, 1, 1], plus final sigmoid ac-
tivation, to get the confidence map for surface normal pre-
diction.

C. System Training
Our proposed deep MVS system is trained with two

stages. In the first stage, we train the initial depth, nor-
mal, and confidence estimation network for 15 epochs.
The training loss for the initial depth, normal and confi-
dence estimation, denoted as Lnet, includes three parts:
Lnet = wdLd+wnLn+wcLc, where wd, wn, wc are three
hyper-parameters to balance different loss terms. Ld and
Ln are formulated as smoothed L1 loss, and Lc employs
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Figure 1: The inputs are processed with three mini-branches
(with 2 or 3 layers of 3x3 convolutions), and then jointly
fed into 5 dilated convolutions followed by final sigmoid
activation to regress the depth confidence map.
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Figure 2: The inputs are processed with two mini-branches
(with 2 layers of 3x3 convolutions), and then jointly fed into
5 dilated convolutions followed by final sigmoid activation
to regress the normal confidence map.

cross-entropy loss. Lc consists of depth confidence loss Lcd

and surface normal confidence loss Lcn, and is computed as
Lc = Lcd + Lcn.

In the second stage, we finetune the network jointly with
the proposed iterative depth normal solver for 10 epochs.
During the training, We iteratively refine the depth map
and surface normal map for 5 times to balance the com-
putation and effectiveness. We apply the depth and sur-
face normal loss on both the initial predictions and the fi-
nal solved geometry. Thus the total loss for end-to-end
training is Ltotal = λLnet + Lsolver, where Lsolver =
wd′Ld′ +wn′Ln′ is the depth and normal loss for the solved
geometry. Ld′ and Ln′ are smoothed L1 loss for the refined
depth and normal, respectively. wd′ and wn′ are hyper-
parameters. λ is the hyper-parameter for weighting these
two losses Lnet and Lsolver. We choose to include the Lnet

in the end-to-end training to regularize the initial depth and
normal predictions, which in practice stabilizes the joint
training.

D. Implementation Details
The hyperparameters are heuristically selected without

much tuning. We set loss weights [λ, wd, wn, wc, wd′ , wn′ ]
to [0.7, 1.0, 3.0, 0.2, 1.0, 3.0]. The scaling factors γ1, γ2 for
depth and normal confidence groundtruth are both set to 5.0
in the training. The spatial and color weights for bilateral
affinity σ2

x, σ
2
c are set to 2.5 and 25.0, and the weight α

for depth and normal data term of the energy is set to 1.0.
These hyper-parameters are fixed during both training and
inference.

E. Notations
We provide a notation cheat sheet in Table 1, which de-

scribes the relevant notations used in the main paper and
this supplementary material.

F. Additional Visualization
We provide additional visualizations for both depth and

surface normal estimation in Figure 3 and 4. All samples
are from the official test split of ScanNet [1].
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Notations Descriptions Appearances
Etotal The total energy potential for the solver Sec. 3.1, Sec. 3.2, Sec. A.2
Edata The data term in the total energy potential Sec. 3.1, Sec. A.3
Eplane The plane-based structural term in the total energy potential Sec. 3.1
α The hyperparameter to balance the data term and structural term Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3, Sec. E
x, d, n, c 2D coordinate, depth, surface normal, and confidence Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
xi, di, ni, ci Per-pixel 2D coordinate, depth, surface normal, and confidence Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2
d̂i, n̂i Initial per-pixel depth and surface normal Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3
P (x, d, n) The plane generated by current 2D coordinate x, depth d, and normal n Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
Ej→i, Ei→j The plane-based structural term defined in two directions Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.3
dj→i The projection of the plane P (xj , dj , nj) at pixel i Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
di→j The projection of the plane P (xi, di, ni) at pixel j Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
wij Edge-aware bilateral affinity between pixel i and j Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3
Ii RGB value at pixel i Sec. 3.1
σx, σc The hyperparameters for the spatial term and color term in the bilateral affinity Sec. 3.1, Sec. E
Ed The minimized objective in the D-step Sec. 3.2, Sec. A.2, Sec. A.3
N(i) The defined neighborhoods of pixel i Sec. 3.2, Sec. A.2, Sec. A.3
En The minimized objective in the N-step Sec. 3.2, Sec. A.2, Sec. A.3
Dn The distance function between the depth d and slanted plane P used in the N-step Sec. 3.2, Sec. A.2, Sec. A.3
a, b Components of the parameterized surface normal, n = (a, b,−1) Sec. 3.2, Sec. A.1, Sec. A.2
cdgt, cngt Groundtruth (GT) confidence maps for depth and surface normal Sec. 4.1
erel, eang Relative depth error and normal angle error between predictions and groundtruths Sec. 4.1
γ1, γ2 Hyperparameters used in the computation of the GT depth and normal confidence Sec. 4.1, Sec. E
p, q, z The 3D coordinate of the unprojected point Sec. A.1, Sec. A.2
K Camera intrinsic matrix Sec. A.1
u, v 2D pixel coordinates, x = (u, v)T Sec. A.1
ũ, ṽ (ũ, ṽ, 1)T = K−1(u, v, 1)T Sec. A.1
d∗ The optimal depth map in the D-step Sec. A.2
n∗ The optimal surface normal map in the N-step Sec. A.2
a∗, b∗ Components of the optimal surface normal n∗, n∗ = (a∗, b∗,−1) Sec. A.2
A11, A12, A21, A22, Coefficients used in the N-step computation Sec. A.2
B1, B2

cd, cn The depth confidence map and surface normal confidence map Sec. A.3
cd,i, cn,i Per-pixel depth confidence and surface normal confidence Sec. A.3
Lnet Training loss for the initial depth, surface normal, and confidence network Sec. D
Ld, Ln, Lc Losses of initial depth, surface normal and confidence Sec. D
wd, wn, wc Loss weights of initial depth, surface normal and confidence Sec. D, Sec. E
Lcd, Lcn Confidence loss for depth and normal, Lc = Lcd + Lcn Sec. D
Ltotal Total training loss in the end-to-end training Sec. D
Lsolver The Loss defined over the solved geometry Lsolver = wd′Ld′ + wn′Ln′ Sec. D
Ld′ , Ln′ Losses of the solved depth and surface normal Sec. D
wd′ , wn′ Loss weights of the solved depth and surface normal Sec. D, Sec. E
λ The hyperparameter used to balance Lnet and Lsolver Sec. D, Sec. E

Table 1: Notations used in the main paper and supplementary material.



(a) Image (b) Groundtruth (c) Ours (d) DELTAS [6] (e) NAS [3] (f) DPSNet (FT) [2] (g) MVDepth (FT) [7] (h) N-RGBD [4]

Figure 3: More qualititative results of depth estimation on ScanNet [1]. Better viewed when zoomed in.



Image GT CNM [5] NAS [3] Ours

Figure 4: More qualitative results of surface normal estimation on ScanNet [1]. Better viewed when zoomed in.


