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Abstract

In this paper, we introduce a deep multi-view stereo
(MVS) system that jointly predicts depths, surface normals
and per-view confidence maps. The key to our approach
is a novel solver that iteratively solves for per-view depth
map and normal map by optimizing an energy potential
based on the locally planar assumption. Specifically, the
algorithm updates depth map by propagating from neigh-
boring pixels with slanted planes, and updates normal map
with local probabilistic plane fitting. Both two steps are
monitored by a customized confidence map. This solver is
not only effective as a post-processing tool for plane-based
depth refinement and completion, but also differentiable
such that it can be efficiently integrated into deep learn-
ing pipelines. Our multi-view stereo system employs multi-
ple optimization steps of the solver over the initial predic-
tion of depths and surface normals. The whole system can
be trained end-to-end, decoupling the challenging problem
of matching pixels within poorly textured regions from the
cost-volume based neural network. Experimental results
on ScanNet and RGB-D Scenes V2 demonstrate state-of-
the-art performance of the proposed deep MVS system on
multi-view depth estimation, with our proposed solver con-
sistently improving the depth quality over both conventional
and deep learning based MVS pipelines. Code is available
at https://github.com/thuzhaowang/idn-solver.

1. Introduction

Dense multi-view stereo (MVS) has been a long-
standing fundamental topic in computer vision. The key
idea of most existing techniques is to compare the similar-
ity of image patches at different depth hypotheses, densely
matching pixels across images. While great improvement
has been witnessed over decades, it is still a hard problem
to accurately estimate dense geometry from posed images
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Figure 1. By integrating the proposed iterative solver into end-to-
end training, our method decouples the challenging problem of
estimating depth values within poorly textured regions from the
initial network predictions, getting the network to focus more on
reliable estimation on well textured pixels. This improves depth
quality on both textured (blue) and texture-less (red) regions. Note
that on texture-less areas (red box on (c)(d)), the network jointly
trained with the solver only focuses on predicting reliable geome-
try on neighboring areas, leaving the poorly textured pixels to be
resolved with the iterative solver module.

in many real-world scenarios, especially in indoor environ-
ments, where one of the most typical reasons of failure is
the existence of texture-less areas (e.g. walls), which incur
significant ambiguities to the matching step, as a number of
different depths all result in low matching costs.

There have been various attempts to tackle this crucial
problem. Global optimization [19, 5, 50] is one possible di-
rection to resolve the ambiguities. Those methods initially
assume a fixed set of superpixels and apply Markov random
field with slanted-plane models. The optimization prefers
globally smoothed geometry with locally planar surfaces
and achieves promising performance. However, global op-
timization methods suffer from large computational com-
plexity and the performance is also limited by the quality of
superpixels and handcrafted dense features.

With the recent success of deep learning, learning-based
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methods have achieved great performance on datasets due
to the improved quality of learned features and depth pri-
ors. Typically, a cost-volume based architecture [51, 47] is
trained end-to-end with a pixelwise loss function on depths.
While the ambiguities incurred by the texture-less areas still
exist in the built cost volumes, several methods propose to
utilize surface normals, either jointly predicted [38, 29] or
online fitted [52, 33], to help train the depth predictions,
aiming to implicitly enrich the network with locally planar
priors by directly supervising the local structure of the pre-
dicted depth map. However, it is still a difficult problem to
successfully learn such priors and accurately predict depths
on texture-less areas directly from the ambiguous cost vol-
umes built on warped patches.

In this paper, we propose a novel deep multi-view stereo
system that decouples the locally planar priors from the cost
volume based depth/normal prediction networks. The key
to our proposed system is a differentiable confidence-based
solver that iteratively solves for depth map and normal map
by optimizing an energy potential that prefers locally pla-
nar surfaces. For each optimization iteration, the solver
updates depth map by propagating from neighboring pix-
els with slanted planes, and updates normal map with local
probabilistic plane fitting. A customized confidence map
can be used to monitor both two steps.

Our deep MVS system firstly predicts depth, normal and
confidence jointly and then applies multiple optimization
steps of our depth-normal solver upon the initial predic-
tions. Those multiple steps enable long-range propagation
of reliable depths and normals. The whole system can be
trained end-to-end, guiding the depth/normal network to fo-
cus more on confident depth/normal predictions on textured
areas and leave the poorly textured regions to be resolved
with the solver. For the solver module, a hybrid confidence
map combining the deep confidence prediction and the con-
ventional geometric reprojection check can be used to sta-
bilize the optimization process at inference.

The proposed system combines the advantages of
slanted-plane models [4] and learning-based techniques.
With end-to-end training, the initial depth prediction is
guided to focus only on reliable estimation over partial re-
gions rather than the whole image (as shown in Fig. 1). Ex-
perimental results on ScanNet and RGB-D Scenes V2 show
that our novel deep MVS achieves state-of-the-art perfor-
mance in terms of accuracy on depths and surface normals,
with the proposed solver consistently improving the depth
quality over both conventional and deep MVS pipelines.

2. Related Work
Multi-view Stereo. Reconstructing 3D models from
posed images has been widely studied over decades. Early
methods [30, 12, 46] utilize volumetric optimization. Later
attempts [53, 14, 6, 20, 41] reconstruct per-view depth

maps by comparing cross-view image patches, which be-
comes the de facto approach of modern multi-view stereo
pipelines. Recent advances include employing superpix-
els [39], post-refinement [27, 28], and advanced propa-
gation checkerboards [13, 48, 49], etc. With the suc-
cess of deep learning, a number of learning-based tech-
niques are proposed to tackle the problem. While sev-
eral methods learn to directly predict 3D geometry as grids
[25, 24], point clouds [7] and TSDF [35], per-view depth
map estimation is still the top choice of most approaches
[47, 51, 23, 32, 21, 29, 33, 10, 36] due to its robustness and
flexibility. Most of those methods follow the spirit of con-
ventional approaches [14, 6] and train a cost volume based
neural network. Some of the methods [21, 10, 36] also inte-
grate temporal information with recurrent networks. How-
ever, direct prediction over poorly textured areas have been
one of the main difficulties of most approaches relying on
cost volumes. An exception of this is DELTAS [43], which
proposes to learn interest points and perform triangulation
and densification over sparse points. In this work, we also
focus on per-view depth estimation and introduce an end-
to-end MVS system equipped with a novel iterative solver,
which implicitly decouples depth prediction over texture-
less areas from the cost-volume based network.

Confidence Estimation. Accurately estimating per-view
depth map confidence is beneficial to 3D reconstruction
pipelines. Early confidence measures such as matching
cost, peak ratio and maximum likelihood are extensively
studied in [18, 22]. Local smoothness can also contribute to
the confidence measurement of the stereo problem [44, 17].
Recently, learning-based methods [42, 37] are proved to
be effective on confidence estimation. Most related to us,
[28] exploits the counter map acquired from the geometric
consistency check for deep confidence prediction. In our
MVS system, we combine deep confidence estimation and
geometric consistency check together to get our final confi-
dence map, which monitors the solver at inference.

Depth-Normal Constraints. As depths and surface nor-
mals are naturally coupled by local plane fitting, joint depth-
normal constraints are widely employed. Markov ran-
dom fields with slanted-plane models were initially intro-
duced in [4], and were later used in many stereo techniques
[19, 5, 50]. Those methods operate on superpixels and pre-
fer locally planar surfaces. [6] proposed to employ slanted
support windows in its PatchMatch stereo framework, cou-
pling the depth propagation with the randomly initialized
per-pixel surface normal. [15] further introduce a minimal-
surface regularization method. [45] propose to embed bilat-
eral filtering in the plane fitting process to encourage locally
planar structures of the output depth map. Recent learning-
based methods also exploit surface normals to help train the
depth prediction. While [11, 38, 29] jointly predict depths



and surface normals together to benefit from multi-task fea-
ture learning, recent literature [52, 33] adopts online fitting.
In [55], a surface normal network is trained to help solve for
dense depth map from sparse depth observations. Differ-
ent from prior works, our method explicitly exploits depth-
normal constraints via a differentiable iterative solver.

3. An Iterative Depth-Normal Solver
The key to our deep multi-view stereo system is a

confidence-based iterative depth-normal solver module,
which solves for per-view depth map and normal map from
the initial predictions. Specifically, we assume locally pla-
nar structure of the depth map and couple the normal map
within our optimization scheme.

3.1. Energy Formulation

Our energy potentialEtotal consists of a data termEdata

and a plane-based structural term Eplane, with the hyperpa-
rameter α weighting the two terms:

Etotal = αEdata + Eplane, (1)

The data term regularizes the output geometry with re-
spect to the given initial geometry. Take di, ni as the per-
pixel depth and surface normal respectively, and ci as the
per-pixel confidence. Denote the initial depth and surface
normal as d̂i and n̂i. The data term is written as follows:

Edata =
∑
i

ci(di − d̂i)2 +
∑
i

ci||ni − n̂i||2. (2)

The plane-based structural term Eplane enforces the out-
put depth and surface normal to agree with the local pla-
nar assumption with respect to neighboring geometry. Let
(xi, di, ni) and (xj , dj , nj) denote the 2D coordinate, depth
and surface normal of the current pixel and its neighboring
pixel respectively. P (x, d, n) denotes the slanted plane at
position x generated by spanning a plane from the corre-
sponding 3D points recovered from d and x with the sur-
face normal n. Our plane-based structural energy can be
formulated in either of the two below directions:

• Ej→i. The sum (over each pixel) of distance functions
between the 3D point recovered from di and xi at the
current pixel i and the slanted plane P (xj , dj , nj) gen-
erated at its neighboring pixel j. dj→i denotes the pro-
jection of the slanted plane P (xj , dj , nj) at pixel i.

• Ei→j . The sum (over each pixel) of distance func-
tions between the slanted plane P (xi, di, ni) generated
at the current pixel i and the 3D point recovered from
xj and dj at its neighboring pixel j. di→j denotes the
projection of the slanted plane P (xi, di, ni) at pixel j.
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Figure 2. Illustration of the proposed solver. (a) we use a sparse
checkerboard to define the neighborhood of each pixel, which en-
ables large receptive fields and efficient computation. (b) In the
D-step, we update depth map by propagating from neighboring
pixels with slanted planes. (c) In the N-step, we update normal
map with local probabilistic plane fitting.

For the definition of neighboring pixels, we can either
use a sparse checkerboard [13, 48] (as in Fig. 2(a)) or ran-
domly sample sparse points within a fixed window. This
enables efficient long-range propagation of the neighboring
geometry. In both formulations of the structural energy the
contribution of each pixel is also monitored by the per-pixel
confidence ci. Motivated by the effective formulation in
the bilateral filtering techniques [2, 3], we also weight the
contribution of the neighboring pixels with the edge-aware
bilateral affinity, denoted as wij :

wij = exp(−||xi − xj ||
2

2σ2
x

− ||Ii − Ij ||
2

2σ2
c

), (3)

where Ii denotes the RGB value at each pixel. While we
use RGB colorspace here for simplicity, the weight can be
easily extended to YUV space, as employed in [2, 3].

3.2. Iterative Subproblem Optimization of Depths
and Surface Normals

We aim to minimize the total energy with an effective,
parallelized and differentiable approximation. To paral-
lelize the computation, we assume fixed neighboring ge-
ometry and solve for each pixel individually at each up-
date step. Since depths and surface normals are non-linearly
coupled when propagating from neighboring pixels due to
the perspective projection of the slanted planes, closed-form
solution can not be acquired for the whole energy potential
with depths and normals both considered in the data term1.

Our proposal is to iteratively solve for depths and sur-
face normals. As shown in Figure 2(b)(c), Each iteration
is further divided into two steps of subproblem optimiza-
tion, where we solve for depths/normals individually with
the other variables (normals/depths) fixed. Those two sub-
problems can all have closed-form solutions. Furthermore,
we alternate between the two plane-based structural term
formulations to better fit each sub-problem, acquiring a

1If only the surface normal data term is considered, closed-form solu-
tion can be derived by substitution of variables.



TargetRef 1 Ref 2

Shared
Encoder

Feature
Maps

Feature
Maps

Feature
Maps

Homography
Warping

Feature
Cost Volume Depth 

Branch

Normal
Branch

Confidence 
Branch (N)

Confidence 
Branch (D)

GT conf (N) GT conf (D) Iterative Confidence‐based 
Depth‐Normal Solver

n

𝒅𝒋→𝒊

Local plane 
at pixel 𝒋

n

𝒅𝒊→𝒋

Local plane 
at pixel 𝒊

D‐step

N‐step

Iteratively

1

2

Figure 3. An overview of our deep multi-view stereo (MVS) system. First, We feed the target image and multiple reference images into
a shared encoder to extract per-view deep image features, which are used to build a feature cost volume. Then, we jointly predict depth,
surface normal and confidence from the cost volume with 3D CNNs and 2D dilated CNNs [54]. Finally, the confidence-based depth-normal
solver is applied over the predicted depths and surface normals iteratively to get the final output. The whole system can be trained end-to-
end. At training, a groundtruth confidence map computed by the relative depth error is used to help guide the initial prediction to focus on
estimating reliable geometry on textured areas. Note that the inputs of the confidence branch are simplified for better visualization.

decoupled linear system algebraically for both steps, thus
making the gradients of the whole solver tractable.

Depth Update (D-step). In the depth update step, we fix
the surface normal map and solve for the optimal depth map
that minimizes the depth energy Ed as follows:

min
d
Etotal = min

d
Ed (4)

Ed = α
∑
i

ci(di − d̂i)2 +
∑
i

∑
j∈N(i)

cjwij(di − dj→i)
2,

(5)

where N(i) denotes the defined neighborhoods of the
pixel i. We employ Ej→i as the plane-based structural
term and computes the L2 distance between the optimized
depth and the propagated depth dj→i. As previously dis-
cussed, we assume fixed neighboring geometry, so the prop-
agated depth dj→i here is the projection of the slanted plane
P (xj , d̂j , n̂j) at pixel i. Compared to Ei→j which only
uses one surface normal query at the pixel itself, employing
Ej→i improves robustness to outliers in the initial surface
normal map, enabling the solver to utilize surface normals
in all neighboring pixels. We can derive closed-form opti-
mal depth by setting the first-order derivative of Ed to zero.

Surface Normal Update (N-step). In the surface normal
update step, we fix the depth map and solve for the optimal

surface normal that minimizes the surface normal energy
En as follows:

min
n
Etotal = min

n
En (6)

En = α
∑
i

ci||ni − n̂i||2

+
∑
i

∑
j∈N(i)

cjwijDn(dj , P (xi, di, ni)).
(7)

Dn is a distance function between the depth dj at neigh-
boring pixels and the slanted plane P (xi, di, ni) at pixel i.
The plane equation is computed from the depth di updated
in the last step and the surface normal ni being optimized,
forming a local probabilistic plane fitting problem. Note
that simply employing L2 distance between dj and di→j as
in the D-step will result in a non-quadratic surface normal
energy due to the perspective projection during plane-based
propagation. Instead, we can parameterize the surface nor-
mal as n = (a, b,−1) and utilize the algebraic form of the
plane equation to acquire a quadratic energy, where 2 linear
equations can be acquired by setting the first-order deriva-
tives to zero, being sufficient to solve the 2-DoF surface
normal ni in closed form2.

4. Deep Multi-view Stereo System
Based on the confidence-based iterative solver, we pro-

pose a deep multi-view stereo system that jointly predicts
2Please refer to our supplementary material for more details.



per-view depths, surface normals and confidence maps.
Figure 3 shows an overview of the proposed system.

4.1. Estimating Initial Depths and Surface Normals

As our work does not focus on the network architectures,
we mostly follow prior works [23, 29] to build the cost-
volume based multi-view depth-normal network. First, the
target image and multiple reference images are fed into a
shared neural network encoder respectively to acquire per-
view deep image features. Then, we apply plane sweeping
on feature maps to build a feature cost volume. 3D CNNs
and 2D dilated CNNs [54] are applied over the cost volume
to aggregate and regularize the cost information. The depth
maps are then regressed using the soft argmin operator from
the final cost volume. The normal branch follows the design
of [29], which concatenates the world coordinate volume
with the feature cost volume, and uses cost volume slices to
estimate the surface normal.

For the confidence estimation, multiple sources are uti-
lized to facilitate the effective confidence regression, in-
cluding intermediate feature maps, cost volumes, and the
predicted depths/normals. We feed them into two mini-
networks which consist of several dilated convolutions and
a final sigmoid activation, to estimate the confidence for
depth and normal respectively. Please refer to our supple-
mentary material for details on the network architecture.

To train the network, we use smoothed L1 loss for depth
and normal, and cross-entropy loss for confidence. The
groundtruth confidence maps cdgt and cngt are computed
from the relative depth error erel and normal angle error
eang: cdgt = max(1.0−γ1erel, 0.0) and cngt = max(1.0−
γ2eang, 0.0), where γ1, γ2 are hyperparameters.

4.2. Integrating the Proposed Solver

After acquiring the initial predictions, we employ our
solver module over the initial depth map and surface normal
map. Specifically, D-step and N-step are applied iteratively
for multiple iterations. We use 5 iterations for training and
more steps can be used at inference. Multiple iterations lead
to more accurate approximation of the optimal depth and
surface normal under the local planar assumption. More-
over, since the plane-based propagation is limited by the
window size of the checkerboard, using multiple iterations
enables long-range propagation from reliable pixels. Em-
pirically we find that improving the number of iterations at
inference does lead to better depth quality (See Table 6).

Since all operations in the solver are differentiable, the
whole system can be trained end-to-end, where the loss on
the final solved geometry can be back-propagated into the
network for training initial depth/normal predictions. At the
training stage, we apply the depth loss and normal loss both
on the initial predictions and the final solved geometry.

The end-to-end training of the system brings up several

(a) Image (b) Depth Error (c) Geometric Conf (d) Deep Conf

Figure 4. Visualization on different confidence maps. The rela-
tive depth error (b) is used to compute the groundtruth confidence.
While the confidence acquired by geometric consistency check (c)
is more accurate, the deep confidence (d) is complete and acts as a
supplements to the geometric confidence at inference.

advantages. First, the solver can be considered as a closed-
form refinement step to the initial depth/normal predictions,
which improves robustness to noise and outliers. More-
over, the plane-based structural term favors locally planar
surfaces, which is particularly beneficial on poorly textured
regions and occluded areas in indoor environments, where
cost-volume based approaches struggle to estimate accurate
geometry due to large ambiguity. Integrating the proposed
solver into our end-to-end deep MVS system eliminates
the necessity for the network to handle pixels in extremely
texture-less regions, since it can be left to the propagation
steps of the solver at inference. This promotes our network
to only focus on reliable estimation on textured areas, which
largely releases the learning burden. As shown in Figure 1,
this mechanism improves the depth quality significantly on
both textured and texture-less regions.

To better enrich the network with such behaviors, at
training we apply the iterative solver with the groundtruth
depth/normal confidence map, which is computed by
comparing the error of the depth/normal map with the
groundtruth depth/normal. We empirically observe that
high-quality confidence map for the solver is needed during
training. Only using the jointly predicted confidence map
at training cannot successfully enrich the initial predictions
with the aforementioned nice property.

4.3. Inference

At inference, we use the trained network to predict ini-
tial depths, surface normals and confidence maps. The pre-
dicted confidence can be used in the iterative solver with
the initial depth map and normal map as input. To further
improve the quality of the depth confidence, we also uti-
lize a cross-view geometric consistency check over the pre-
dicted depth maps at multiple views to acquire a geometric
confidence. The target depth is reprojected and compared
with the reference depths to compute the relative depth er-
ror, which is then converted into geometric confidence. If
multiple reference images are available, we take the mini-
mum over computed confidence maps to get a “strict” confi-
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Figure 5. Visualization on the optimization process of the proposed
depth-normal solver for a synthetic proof-of-concept experiment.

dence, which reduces the number of false-positive high con-
fidence pixels. As shown in Figure 4, while the geometric
confidence is often more accurate, the deep confidence is
complete under occlusions and small overlaps, which can
serve as a good supplements in practice. A hybrid confi-
dence map can be acquired by multiplication of the deep
confidence and the geometric confidence, which is used in
the iterative solver to produce the final output geometry.

5. Experiments
5.1. Implementation Details

We use the ScanNet dataset [9] to train our system. The
official training split is adopted. Three views from one
sequence with a fixed frame interval 20 forms a training
data sample. The initial depth and normal network is firstly
trained with 15 epochs, then integrated with the solver and
trained end-to-end for another 10 epochs. We use the Adam
optimizer [26] with learning rate 1e-4 and batch size 24 on
4 Nvidia V100 GPUs. For the solver, we define the neigh-
borhood by offsetting each coordinate with 1, 3, 5, 10 pixels
horizontally and vertically, forming 16 valid entries of the
propagation checkerboard (as illustrated in Figure 2(a)).
Time efficiency. A direct implementation in PyTorch takes
14ms for each iteration on a Nvidia V100 GPU. Implement-
ing a CUDA C++ kernel can lead to 0.9ms/iter (15x speed-
up) over a 4-Megapixel image, which is nearly negligible
compared to the the backbone network.

5.2. Validating the Solver Module

We first perform a validation check on the effectiveness
of the proposed solver module under a non-learning setup,
where the solver serves as a post-processing tool for depth
refinement and completion. We start with a synthesis case
where four different 100x100 planar regions are projected
onto a 200x200 image. For the initial input, the geome-
try of each pixel has 95% probability to be substituted with
random noise, simulating unreliable pixels. Figure 5 shows
qualitative results of applying the iterative solver on the
input geometry. With the iterative optimization of depths
and normals, the geometry is gradually refined to be close
to the groundtruth target, demonstrating that our proposed
solver successfully integrate locally planar priors into the
optimization. We further test the solver on real outdoor data
acquired from AdelaideRMF dataset [1], which is widely
used for multi-structure fitting methods [16, 34]. Specifi-

Figure 6. Results on applying the proposed solver over sparse re-
constructions from COLMAP [40, 41]. Top row: input image.
Middle row: initial sparse depth map acquired from COLMAP.
Bottom row: output depth after applying the proposed solver.

cally, we apply the iterative solver over the depth map ac-
quired from the sparse reconstruction of COLMAP [40, 41].
Results are shown in Figure 6. Our proposed solver suc-
cessfully complete the sparse input with reasonably correct
output, demonstrating the effectiveness of the module.

5.3. Experiments on Multi-view Stereo

To compare our proposed deep MVS system with lead-
ing approaches, we evaluate our method on well-established
benchmarks including ScanNet’s official test split [9] and
RGB-D Scenes V2 dataset [31]. Both datasets include
challenging indoor scenes with many poorly textured re-
gions. Quantitative results on multi-view depth estimation
are shown in Table 1 and Table 3, where our system sur-
passes all existing state-of-the-art methods by a large mar-
gin on both datasets. Qualitative results in Figure 7 also
demonstrate great improvement of our proposed system.
Our method not only produces accurate depth map, but also
successfully handles fine details around boundaries. We
further evaluate the estimated surface normal for our deep
MVS system. Results are shown in Table 2, where we again
achieves state-of-the-art performance on ScanNet dataset
[9]. Qualitative visualizations in Figure 9 clearly show the
improvement of our method. Finally, we show visualiza-
tions of reconstructed models after TSDF fusion [8] in Fig-
ure 8. Our method produces visually more appealing recon-
structions compared to strong baseline methods [23, 43].



Method Abs Rel Abs Diff Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

MVDepth [47] 0.1053 0.1987 0.0634 0.3026 0.1490 0.8817 0.9723 0.9924
MVDepth (FT) 0.1014 0.1891 0.0476 0.2850 0.1390 0.8930 0.9764 0.9941
GP-MVS [21] 0.0920 0.2283 0.0644 0.4436 0.1560 0.8918 0.9629 0.9918
GP-MVS (FT) 0.0787 0.2008 0.0518 0.4009 0.1394 0.9134 0.9643 0.9931
NeuralRGBD [32] 0.0871 0.1710 0.0409 0.2693 0.1324 0.9150 0.9785 0.9925
CNM [33] 0.1119 0.2101 0.0510 0.2970 0.1485 0.8686 0.9724 0.9930
DPSNet [23] 0.1164 0.1992 0.0606 0.3065 0.1602 0.8569 0.9575 0.9884
DPSNet (FT) 0.0910 0.1807 0.0410 0.2697 0.1291 0.9008 0.9787 0.9952
NAS [29] 0.0795 0.1597 0.0323 0.2357 0.1112 0.9284 0.9862 0.9966
DELTAS [43] 0.0738 0.1380 0.0245 0.2051 0.1021 0.9473 0.9890 0.9976
Ours 0.0665 0.1281 0.0240 0.1995 0.0990 0.9489 0.9896 0.9978

Table 1. Quantitative comparisons between our method and state-of-the-art deep MVS methods on ScanNet dataset [9]. All the methods
use sequences of length 3 and fixed reference interval 20 for testing, except GP-MVS [21] and NeuralRGBD [32], which directly use the
whole sequence. Since [47, 21, 23] were not initially trained on ScanNet, we also report the results after finetuning, denoted as “FT”.

(a) Image (b) Groundtruth (c) Ours (d) DELTAS [43] (e) NAS [29] (f) DPSNet (FT) [23] (g) MVDepth (FT) [47] (h) N-RGBD [32]

Figure 7. Qualititative results of multi-view depth estimation on ScanNet [9]. Better viewed when zoomed in.

Method Mean Median 11.25° 22.5° 30°
CNM [33] 27.92 22.12 27.43 52.16 63.44
NAS [29] 24.12 18.02 31.59 60.20 69.45
Ours 22.30 16.75 34.80 64.39 75.11

Table 2. Quantitative comparisons of surface normal estimation
between our method and state-of-the-art methods [33, 29].

5.4. Ablation Studies

We perform several ablation studies to further under-
stand the behaviors of the proposed solver. All ablation
studies are conducted on ScanNet [9]. To study the con-
tribution of the depth-normal solver with its post process-

Method Abs Rel Abs Diff Sq Rel RMSE δ < 1.25
MVDepth [47] 0.0885 0.1467 0.0314 0.2313 0.9184
GP-MVS [21] 0.1087 0.1514 0.0827 0.2873 0.9170
N-RGBD [32] 0.0995 0.1530 0.0352 0.2361 0.9233
CNM [33] 0.1350 0.1873 0.0484 0.2619 0.8667
DPSNet [23] 0.0771 0.1290 0.0234 0.2045 0.9401
NAS [29] 0.0732 0.1241 0.0198 0.1893 0.9576
DELTAS [43] 0.1065 0.1528 0.0299 0.2138 0.9156
Ours 0.0698 0.1130 0.0194 0.1770 0.9681

Table 3. Quantitative comparisons between our method and state-
of-the-art deep MVS methods on RGB-D Scenes V2 dataset [31].

ing and end-to-end joint training, we train a baseline with
the same network architecture completely without the pro-
posed solver, which does not benefit from joint training. For



(a) Groundtruth (b) Ours (c) DELTAS [43] (d) DPS [23]

Figure 8. Visualization of our reconstruction results compared to DELTAS [43] and DPS [23]. Better viewed when zoomed in.

Image GT CNM [33] NAS [29] Ours

Figure 9. Qualitative results of surface normal estimation on Scan-
Net [9]. Refer to supp. for higher-resolution images.

comparison, we also apply the solver to refine the baseline’s
output with the hybrid confidence map at inference. Three
conclusions can be acquired from the results shown in Table
4: 1) As a post-processing tool, the proposed solver consis-
tently improves the output of the network no matter whether
the network is jointly trained. 2) The joint training improves
the quality of the estimated initial depth (0.0735→ 0.0711).
This is because joint training gets the network to focus more
on reliable estimation on well textured areas, which largely
releases the learning burden. 3) With end-to-end joint train-
ing, the performance gain of applying the solver module at
inference increases. This agrees with our assumption that
during end-to-end training, the network is guided to output
initial geometry that well fits the subsequent solver module.

In addition, we also study the design choices on the con-
fidence map. Table 5 shows the results. We observe that
geometric confidence is more effective than the estimated
deep confidence. Although the performance gain of includ-
ing the deep confidence is not significant, the deep confi-
dence is complete and will not be affected by occlusions or
small overlaps, which can serve as a good supplements for
geometric confidence in practice. Furthermore, we study
the effects of different number of reference views during
geometric consistency check and different number of iter-
ations at inference. Table 6 shows the results, which in-
dicate that improving the number of iterations consistently
improve the final depth quality. However, as currently we
take the minimum confidence over all reference frames to
get a “strict” depth confidence, adding views will only re-
sult in slight performance gain. More advanced confidence
based on multi-view depth fusion is left for future work.

Method Abs Rel RMSE δ < 1.25
Baseline 0.0735 0.2169 0.9359
Baseline + post 0.0720 0.2148 0.9378
Joint train w/o post 0.0711 0.2121 0.9384
Joint train + post 0.0665 0.1995 0.9489

Table 4. Ablation studies on the contribution of the solver used
at post-processing and end-to-end joint training. “post” indicates
using the solver to post-process the depth map with 10 iterations.

Method Abs Rel RMSE δ < 1.25
Joint train w/o post 0.0711 0.2121 0.9384
Groundtruth conf 0.0599 0.1931 0.9604
Deep conf only 0.0692 0.2040 0.9421
Geometric conf only 0.0667 0.2001 0.9486
Deep + geometric conf 0.0665 0.1995 0.9489

Table 5. Studies on the choices of different confidence maps.

View/Iter 1 iter 5 iters 10 iters 25 iters
1 view 0.0694 0.0680 0.0675 0.0670
2 views 0.0690 0.0672 0.0665 0.0659
4 views 0.0688 0.0669 0.0662 0.0655

Table 6. Ablation studies on the effects of different number of
views used during geometric consistency check and different num-
ber of iterations at inference. Abs Rel is reported for each entry.

6. Conclusion
In this work, we present a deep MVS system with a novel

confidence-based iterative depth-normal solver. We formu-
late an energy potential that favors locally planar surfaces
and propose to perform iterative subproblem optimization
over depths and surface normals in turn. Not only is the
solver able to serve as a post-processing tool for plane-
based depth refinement and completion, but it is also in
closed form such that it can be integrated into our deep
MVS system with end-to-end joint training. Future direc-
tions include advanced confidence estimation and spatial-
temporal plane-based propagation.
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the Natural Science Foundation of China (61725204), BN-
Rist and Tsinghua University (CS Dept) - DeepBlue Tech-
nology (Shanghai) Company Limited Joint Research Center
for Machine Vision (JCMV).



References
[1] http://cs.adelaide.edu.au/ hwong/doku.php?id=data. 6
[2] Jonathan T Barron, Andrew Adams, YiChang Shih, and Car-

los Hernández. Fast bilateral-space stereo for synthetic de-
focus. In CVPR, pages 4466–4474, 2015. 3

[3] Jonathan T Barron and Ben Poole. The fast bilateral solver.
In ECCV, pages 617–632. Springer, 2016. 3

[4] Stan Birchfield and Carlo Tomasi. Multiway cut for stereo
and motion with slanted surfaces. In ICCV, volume 1, pages
489–495, 1999. 2

[5] Michael Bleyer and Margrit Gelautz. A layered stereo
matching algorithm using image segmentation and global
visibility constraints. ISPRS Journal of Photogrammetry and
remote sensing, 59(3):128–150, 2005. 1, 2

[6] Michael Bleyer, Christoph Rhemann, and Carsten Rother.
Patchmatch stereo-stereo matching with slanted support win-
dows. In BMVC, volume 11, pages 1–11, 2011. 2

[7] Rui Chen, Songfang Han, Jing Xu, and Hao Su. Point-
based multi-view stereo network. In ICCV, pages 1538–
1547, 2019. 2

[8] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 303–312, 1996. 6

[9] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828–5839, 2017. 6, 7, 8, 14, 16, 17
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Appendix
In this document, we provide a list of supplementary ma-

terials that accompany the main paper.

A. Detailed Derivations of the Proposed Solver
A.1. Preliminaries

As discussed in the main paper, we solve the depth
map and normal map with two separate suboptimization
steps with respect to the total energy. Each step contains
a plane-based propagation with slanted planes. Recall that
P (x, d, n) denotes the slanted plane at pixel coordinate x
generating by spanning a plane from the corresponding 3D
points recovered from d and x and its surface normal n. In
practice we parameterize the normal to be n = (a, b,−1),
which enables closed-form computation in the normal up-
date step (N-step). Let (p, q, z) denotes the 3D coordinate
of the points recovered from d and x = (u, v)T at the frame
coordinate system:pq

z

 = K−1
[
x
1

]
d =

ũṽ
1

 d, (8)

where K is the camera intrinsic parameter, x = (u, v)T

is the 2D pixel coordinate and (ũ, ṽ, 1)> = K−1(u, v, 1)>

is the normalized homogeneous coordinate. Then, the plane
equation of P (xi, di, ni) with ni = (ai, bi,−1) and the re-
covered 3D points (pi, qi, zi) can be written as follows:

ai(p− pi) + bi(q − qi)− (z − zi) = 0. (9)

At plane-based propagation, the propagated depth di→j

(dj→i) is computed by projecting the slanted plane at i (j)
onto the pixel j (i). We give the derivation of di→j here:

ai(pj − pi) + bi(qj − qi)− (zj − zi) = 0 (10)
⇔ai(ũjdi→j − pi) + bi(ṽjdi→j − qi)− (di→j − zi) = 0

(11)

⇔di→j =
aipi + biqi − zi
aiũj + biṽj − 1

=
aiũi + biṽi − 1

aiũj + biṽj − 1
di (12)

Here di→j is non-linearly dependent upon the depth di and
the surface normal ni = (ai, bi,−1). As there exist second-
order terms aidi and bidi in the denominator, a quadratic
energy over both di and ni is infeasible even when the al-
gebraic formulation is employed. Thus, closed-form so-
lution cannot be acquired when the data term and plane-
based structural term Ei→j

3 are jointly optimized over di
and ni. This motivates us to employ iterative suboptimiza-
tion in the solver to acquire close-form solution, which can

3Ej→i does not include the surface normal ni in its formulation, and
thus can only be used when only depth map is required to be solved.

further benefit our deep MVS system with end-to-end joint
training, as discussed in the main paper.

Before introducing the details of the two update steps of
the proposed solver, let us take a step further on the formula-
tion of jointly solving depths and surface normals. We want
to note that it is possible to formulate closed-form solution
by substitution of variables when only the surface normal
data term is employed. This can be achieved by parameter-
izing the plane equation in Eq. (9) as aip+biq−(z−ti) = 0,
where ti = zi−aipi−biqi = (1−aiũi−biṽi)di. When the
depth data term is not included, by employing the algebraic
form we can get a 3x3 linear system with respect to ai, bi
and ti. However, we empirically observe that the depth data
term is extremely beneficial in practice.

A.2. Closed-form Solution

As discussed in the main paper, we employ suboptimiza-
tion over the depth map and the surface normal map itera-
tively. This enables closed-form solution in both steps.

Depth Update (D-step). At the depth update step (D-
step), we fix the surface normal map and solve for the opti-
mal depth map d∗. L2 distance between the optimized depth
and the propagated depth dj→i from neighboring pixels are
used in the plane-based structural term. The objective is
written as follows (Eqs. (4)(5) in the main paper):

min
d
Etotal = min

d
Ed (13)

Ed = α
∑
i

ci(di − d̂i)2 +
∑
i

∑
j∈N(i)

cjwij(di − dj→i)
2.

(14)

As discussed in the main paper, we assume fixed neigh-
borhoods to enable parallelization of the solver. Thus,
the propagated depth dj→i is the projection of the plane
P (xj , d̂j , n̂j) at pixel i:

dj→i =
âj ũj + b̂j ṽj − 1

âj ũi + b̂j ṽi − 1
d̂j (15)

Set the first-order derivative to zero we can easily derive the
optimal depth d∗i for each pixel:

d∗i =
αcid̂i +

∑
j∈N(i) ciwijdj→i

αci +
∑

j∈N(i) ciwij
. (16)

Surface Normal Update (N-step). At the surface normal
update step, we fix the depth map and solve for the optimal
surface normal n∗. The objective is written as follows (Eqs.
(6)(7) in the main paper):



min
n
Etotal = min

n
En (17)

En = α
∑
i

ci||ni − n̂i||2

+
∑
i

∑
j∈N(i)

cjwijDn(dj , P (xi, di, ni)).
(18)

HereDn is a distance function defined over dj and the plane
P (xi, di, ni) being optimized. Note that because di→j is
non-linearly dependent over ni as shown in Eq. (12) in this
supplementary material, we cannot directly use L2 distance
as in the D-step. Instead, we employ the algebraic formu-
lation of the plane equation and directly formulate the dis-
tance function Dn as the square of the LHS of Eq. (10) in
this supplementary material:

Dn(dj , P (xi, di, ni)) = [ai(pj−pi)+bi(qj−qi)−(zj−zi))]2.
(19)

Because the depth map is fixed in the N-step, the only two
unknown variables are ai and bi, which represent the sur-
face normal ni = (ai, bi,−1). Note that this parameteri-
zation is feasible because all visible surfaces are facing the
position where the camera center locates. However, numer-
ical problems may occur when there exist ill-posed cases
with surfaces that are nearly parallel to the corresponding
camera rays. Thus, we clip the absolute value of the solved
ai and bi with a threshold 20.0. This operation is empiri-
cally crucial to stabilize the end-to-end training process.

By setting the first-order derivatives to zero we can get a
2x2 linear system over a∗i and b∗i , where the optimal surface
normal n∗i is parameterized with n∗i = (a∗i , b

∗
i ,−1). The

coefficients are listed as follows:

[
A11 A12

A21 A22

] [
a∗i
b∗i

]
=

[
B1

B2

]
(20)

A11 = αci +
∑

j∈N(i)

cjwij(pj − pi)2 (21)

A22 = αci +
∑

j∈N(i)

cjwij(qj − qi)2 (22)

A12 = A21 =
∑

j∈N(i)

cjwij(pj − pi)(qj − qi) (23)

B1 = αciâi +
∑

j∈N(i)

cjwij(pj − pi)(zj − zi) (24)

B2 = αcib̂i +
∑

j∈N(i)

cjwij(qj − qi)(zj − zi) (25)

In the final step, normalization is applied on the output
surface normal to get the final prediction with standard pa-

rameterization:

n = (
a√

a2 + b2 + 1
,

b√
a2 + b2 + 1

,− 1√
a2 + b2 + 1

).

(26)

A.3. Extension: Incorporating Customized Depth
Confidence and Normal Confidence

While we present all the derivations with a single con-
fidence map ci for simplicity, a separate depth confidence
map cd and surface normal confidence map cn can be used
in practice to further improve the solver. Employing those
separate customized confidence maps will change the data
term (Eq. (2) in the main paper) into the formulation below:

Edata =
∑
i

cd,i(di − d̂i)2 +
∑
i

cn,i||ni − n̂i||2, (27)

where cd,i and cn,i denotes the per-pixel depth and sur-
face normal confidence respectively. Furthermore, the con-
fidence used in the plane-based structural term can also be
monitored by the separate confidence maps.

Separate Confidence Maps used in the D-step. When
the depth confidence and normal confidence are used
jointly, the final formulation ofEd becomes the form as fol-
lows:

Ed = α
∑
i

cd,i(di − d̂i)2

+
∑
i

∑
j∈N(i)

cd,jcn,jwij(di − dj→i)
2.

(28)

Note that both the depth confidence cd,j and normal confi-
dence cn,j are used in the plane-based structural term. This
is due to the fact that the quality of the propagated depth
dj→i depends on both d̂j and n̂j .

Separate Confidence Maps used in the N-step. As for
the surface normal update step, because Ei→j is employed,
n̂j is non-relevant to the computation so the plane-based
structural term will not be affected by cn,j . However, since
the depth map is fixed here and the computation of di→j

depends on the quality of d̂i, we multiply the plane-based
structural term with the depth confidence of the studied
pixel cd,i. The final formulation of En is written as follows:

En = α
∑
i

cn,i||ni − n̂i||2

+
∑
i

cd,i
∑

j∈N(i)

cd,jwijDn(dj , P (xi, di, ni)).
(29)

Closed-form solution can be easily derived for the mod-
ified objectives in Eq. (28) and Eq. (29) following the pre-
vious discussion.



In our implementation, the depth confidence map and
normal confidence map are jointly predicted by the cost-
volume based neural networks. The supervision is acquired
by computing the relative depth error and normal angle er-
ror, as described in the main paper. At inference, the hybrid
confidence map combining the deep depth confidence and
the geometric confidence is used as the depth confidence
map, while the normal confidence only employs the deep
normal confidence prediction.

B. Network Architectures
We follow prior works [23, 29] to design the initial depth,

surface normal, and confidence estimation networks.
For the depth and normal branches, we use the same

network architectures as [29] without the consistency mod-
ule. Specifically, the target and reference images are first
encoded to get the feature maps. Then we use plane sweep-
ing with 64 hypothesis planes to build the feature cost vol-
ume. The 3D CNNs and 2D context CNNs are applied on
the cost volume to aggregate and regularize the cost infor-
mation. The soft argmin is used to regress the final depth
values from the final cost volume. The cost volume infor-
mation is also utilized for the multi-view surface normal
estimation. The intermediate cost volume features are con-
catenated with the world coordinates of every voxel, and
then transformed by several 3D CNNs to get 8 cost volume
slices. Each slice is processed by 7 shared layers of 2D con-
volutions of dilated 3 × 3 kernels. The output of all slices
are summed and normalized to get the final surface normal.
We recommend the reader to refer to [29] for more details.

For the confidence branch, we input multiple sources
to the network to better estimate the confidence. To pre-
dict the depth confidence, we utilize target image features,
homography-warped reference image features using cur-
rently predicted depth, cost volume features before softmax,
and the predicted depth. As illustrated in Figure 10, these
inputs are processed by three mini-branches, and each mini-
branch contains two or three layers of 3×3 convolutions. To
be specific, the first branch (target image feature + predicted
depth) consists of two 3 × 3 convolution layers whose out-
put channels are both 16. The second branch (target image
feature + warped reference image feature) has also two 3×3
convolution layers whose output channels are both 32. The
third branch (cost volume feature) consists of three 3 × 3
convolution layers with [64, 32, 1] as each layer’s output
channel number. The outputs from three mini-branches are
then concatenated, and five dilated 3× 3 convolution layers
with output channels [64, 64, 64, 32, 1] and dilations [1, 2,
4, 1, 1], followed by the final sigmoid activation, are applied
to jointly predict the depth confidence. For surface normal
confidence, we use target image features, intermediate fea-
tures from the previously discussed 8 cost volume slices,
and the predicted surface normal, as shown in Figure 11.

Target 
Image 
Feature

Bx(32+1)xHxW

Target 
Image 
Feature

Ref 
Image 
Feature

Bx(32+32)xHxW

Cost Volume 
Feature

Bx64xHxW

Concat
Features

Predicted
depth confidenceBx49xHxW

Figure 10. The inputs are processed with three mini-branches (with
2 or 3 layers of 3x3 convolutions), and then jointly fed into 5 di-
lated convolutions followed by final sigmoid activation to regress
the depth confidence map.

Target 
Image 
Feature

Bx(32+3)xHxW

Features
From 8 sliced 
cost volume

Bx64xHxW

Concat
Features

Predicted
normal confidenceBx48xHxW

Figure 11. The inputs are processed with two mini-branches (with
2 layers of 3x3 convolutions), and then jointly fed into 5 dilated
convolutions followed by final sigmoid activation to regress the
normal confidence map.

These inputs are processed by two mini-branches, then con-
catenated and used to jointly predict the surface normal con-
fidence. The first branch consists of two 3 × 3 convolution
layers with both 16 output channels, and the second branch
has also two 3 × 3 convolution layers with both 32 output
channels. Then the outputs from these two mini-branches
are concatenated and processed by five dilated 3 × 3 con-
volution layers with output channels [64, 64, 64, 32, 1] and
dilations [1, 2, 4, 1, 1], plus final sigmoid activation, to get
the confidence map for surface normal prediction.

C. System Training
Our proposed deep MVS system is trained with two

stages. In the first stage, we train the initial depth, nor-
mal, and confidence estimation network for 15 epochs.
The training loss for the initial depth, normal and confi-
dence estimation, denoted as Lnet, includes three parts:
Lnet = wdLd+wnLn+wcLc, where wd, wn, wc are three
hyper-parameters to balance different loss terms. Ld and
Ln are formulated as smoothed L1 loss, and Lc employs
cross-entropy loss. Lc consists of depth confidence loss Lcd

and surface normal confidence loss Lcn, and is computed as
Lc = Lcd + Lcn.



In the second stage, we finetune the network jointly with
the proposed iterative depth normal solver for 10 epochs.
During the training, We iteratively refine the depth map
and surface normal map for 5 times to balance the com-
putation and effectiveness. We apply the depth and sur-
face normal loss on both the initial predictions and the fi-
nal solved geometry. Thus the total loss for end-to-end
training is Ltotal = λLnet + Lsolver, where Lsolver =
wd′Ld′ +wn′Ln′ is the depth and normal loss for the solved
geometry. Ld′ and Ln′ are smoothed L1 loss for the refined
depth and normal, respectively. wd′ and wn′ are hyper-
parameters. λ is the hyper-parameter for weighting these
two losses Lnet and Lsolver. We choose to include the Lnet

in the end-to-end training to regularize the initial depth and
normal predictions, which in practice stabilizes the joint
training.

D. Implementation Details
The hyperparameters are heuristically selected without

much tuning. We set loss weights [λ, wd, wn, wc, wd′ , wn′ ]
to [0.7, 1.0, 3.0, 0.2, 1.0, 3.0]. The scaling factors γ1, γ2 for
depth and normal confidence groundtruth are both set to 5.0
in the training. The spatial and color weights for bilateral
affinity σ2

x, σ
2
c are set to 2.5 and 25.0, and the weight α

for depth and normal data term of the energy is set to 1.0.
These hyper-parameters are fixed during both training and
inference.

E. Notations
We provide a notation cheat sheet in Table 7, which de-

scribes the relevant notations used in the main paper and
this supplementary material.

F. Additional Visualization
We provide additional visualizations for both depth and

surface normal estimation in Figure 12 and 13. All samples
are from the official test split of ScanNet [9].



Notations Descriptions Appearances
Etotal The total energy potential for the solver Sec. 3.1, Sec. 3.2, Sec. A.2
Edata The data term in the total energy potential Sec. 3.1, Sec. A.3
Eplane The plane-based structural term in the total energy potential Sec. 3.1
α The hyperparameter to balance the data term and structural term Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3, Sec. E
x, d, n, c 2D coordinate, depth, surface normal, and confidence Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
xi, di, ni, ci Per-pixel 2D coordinate, depth, surface normal, and confidence Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2
d̂i, n̂i Initial per-pixel depth and surface normal Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3
P (x, d, n) The plane generated by current 2D coordinate x, depth d, and normal n Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
Ej→i, Ei→j The plane-based structural term defined in two directions Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.3
dj→i The projection of the plane P (xj , dj , nj) at pixel i Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
di→j The projection of the plane P (xi, di, ni) at pixel j Sec. 3.1, Sec. 3.2, Sec. A.1, Sec. A.2, Sec. A.3
wij Edge-aware bilateral affinity between pixel i and j Sec. 3.1, Sec. 3.2, Sec. A.2, Sec. A.3
Ii RGB value at pixel i Sec. 3.1
σx, σc The hyperparameters for the spatial term and color term in the bilateral affinity Sec. 3.1, Sec. E
Ed The minimized objective in the D-step Sec. 3.2, Sec. A.2, Sec. A.3
N(i) The defined neighborhoods of pixel i Sec. 3.2, Sec. A.2, Sec. A.3
En The minimized objective in the N-step Sec. 3.2, Sec. A.2, Sec. A.3
Dn The distance function between the depth d and slanted plane P used in the N-step Sec. 3.2, Sec. A.2, Sec. A.3
a, b Components of the parameterized surface normal, n = (a, b,−1) Sec. 3.2, Sec. A.1, Sec. A.2
cdgt, cngt Groundtruth (GT) confidence maps for depth and surface normal Sec. 4.1
erel, eang Relative depth error and normal angle error between predictions and groundtruths Sec. 4.1
γ1, γ2 Hyperparameters used in the computation of the GT depth and normal confidence Sec. 4.1, Sec. E
p, q, z The 3D coordinate of the unprojected point Sec. A.1, Sec. A.2
K Camera intrinsic matrix Sec. A.1
u, v 2D pixel coordinates, x = (u, v)T Sec. A.1
ũ, ṽ (ũ, ṽ, 1)T = K−1(u, v, 1)T Sec. A.1
d∗ The optimal depth map in the D-step Sec. A.2
n∗ The optimal surface normal map in the N-step Sec. A.2
a∗, b∗ Components of the optimal surface normal n∗, n∗ = (a∗, b∗,−1) Sec. A.2
A11, A12, A21, A22, 2*Coefficients used in the N-step computation 2*Sec. A.2
B1, B2

cd, cn The depth confidence map and surface normal confidence map Sec. A.3
cd,i, cn,i Per-pixel depth confidence and surface normal confidence Sec. A.3
Lnet Training loss for the initial depth, surface normal, and confidence network Sec. D
Ld, Ln, Lc Losses of initial depth, surface normal and confidence Sec. D
wd, wn, wc Loss weights of initial depth, surface normal and confidence Sec. D, Sec. E
Lcd, Lcn Confidence loss for depth and normal, Lc = Lcd + Lcn Sec. D
Ltotal Total training loss in the end-to-end training Sec. D
Lsolver The Loss defined over the solved geometry Lsolver = wd′Ld′ + wn′Ln′ Sec. D
Ld′ , Ln′ Losses of the solved depth and surface normal Sec. D
wd′ , wn′ Loss weights of the solved depth and surface normal Sec. D, Sec. E
λ The hyperparameter used to balance Lnet and Lsolver Sec. D, Sec. E

Table 7. Notations used in the main paper and supplementary material.



(a) Image (b) Groundtruth (c) Ours (d) DELTAS [43] (e) NAS [29] (f) DPSNet (FT) [23] (g) MVDepth (FT) [47] (h) N-RGBD [32]

Figure 12. More qualititative results of depth estimation on ScanNet [9]. Better viewed when zoomed in.



Image GT CNM [33] NAS [29] Ours

Figure 13. More qualitative results of surface normal estimation on ScanNet [9]. Better viewed when zoomed in.


