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Overview

• Review of modern object detection pipelines

• RepPoints: bounding box -> point set representation

• RPDet: an anchor-free object detector based on RepPoints

• More discussion
• interpretable deformation modeling
• extending RepPoints: denser (seg) and finer target (correspondence)
• regression vs. discrimination



Review of modern object detection pipelines

RPN design in Faster R-CNN RoI feature extraction in Fast R-CNN

Bounding boxes are used as anchors, proposals and final predictions.



Bounding box has several advantages:

- Easy to be annotated
- Friendly for feature extraction
- Consistent with common metrics (bbox IoU)

Bounding boxes are used as anchors, proposals and final predictions.



Bounding box also has limitations:

- Insensitive to object shape and pose 
(coarse localization lack of geometric 
information)

-> lower localization capability

- Distractive background content and 
informative foreground content included

-> degraded feature and lower recognition 
capability



RepPoints: Point Set Representation

Bounding box        vs.        RepPoints



Learning Representative Points (RepPoints)



RepPoints: Point Set Representation



RPDet: an anchor-free object detector based on RepPoints



Bounding box vs. RepPoints



Studies on assigner, supervision and anchors for RepPoints



System level comparison





Discussion: some thoughts on RepPoints



Discussion A: Interpretable Deformation Modeling

Deformable Convolutional Networks [2]

Only using recognition feedback in an implicit manner & Lacking geometric interpretation on the learned offset.



Discussion A: Interpretable Deformation Modeling 

RepPoints: deformation modeling with explicit geometric interpretation.



Discussion B. Extending RepPoints: Denser and Finer 

Zhu et al. Flow-guided feature aggregation. Zhang et al. Pose-guided image generation, project at Upenn.

Related Work: Deformation modeling for frame-to-frame correspondence in videos.



Discussion B. Extending RepPoints: Denser and Finer 

• Possible direction for extension: dense object perception.

Segmentation (From Zhou et al. ExtremeNet) Semantic Correspondence (From Novotny et al. AnchorNet)

Bottleneck: to design effective and efficient guidance on RepPoints.



Discussion C. Regression vs. Classification

[6] discrimination     vs.        [7] regression

e.g. Object Tracking: reg is more efficient

Regression is relatively more efficient and does not need predefined proposals, while classifying each pixel is 
more suitable for accurate localization. Combining regression with classification can potentially reduce time 
complexity and number of proposals.

e.g. 3D reconstruction: reg has higher resolution

regression vs. discrimination : occupancy networks [8]

Another bottleneck: the localization ability of regression methods are lower than classification methods.
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