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PoseNet Fails to Generalize!

Depth estimation in Indoor environments with 

complex camera motions and low texture

Visual Odometry with Unseen 

Camera Ego-motions

All Drift!



Joint Learning without PoseNet

Built on top of  two-frame structure-from-motion
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Joint Learning without PoseNet
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• Correspondences are sampled based on the occlusion mask and the forward-backward 

consistency score produced by the optical flow network .

• 8-Point algorithm is implemented in RANSAC loop to robustly recover the relative pose.

• Epipolar distance (Inlier mask) is calculated and used to further filter out the incorrect 

matchings and non-rigid objects.



Joint Learning without PoseNet

[R, t]

• We sample 6k matches from flow to triangulate, according to the occlusion mask, 

forward-backward score, and the inlier mask.

• We use mid-point triangulation for its convenience and it’s naturally differentiable.

• A match is abandoned if the angle between two rays is too small.
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Joint Learning without PoseNet

• Predicted depth is aligned with triangulation depth map to have a consistent scale.

• Triangulation loss, depth re-projection loss and the depth smoothness loss are used to 

supervise the depth-net.
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Scale Disentanglement

1. The translation value 𝒕 of estimated pose [𝑹, 𝒕] from monocular 
video is up-to-scale!

2. Monocular depth prediction 𝑫 from network has a learnt scale.

3. Joint training losses require a consistent scale across learnt 
depth and pose. 



Scale Disentanglement

PoseNet-based learning system
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Quantitative Results on KITTI dataset

Our method achieves state-of-the-art performances on KITTI depth and optical flow estimation.



Robustness Improved – KITTI 

Visual Odometry with 

unseen camera ego-motion

PoseNet-based

Our system 



Visual Odometry with 

Indoor Environments

PoseNet-based

Our system 

Robustness Improved – TUM 



Depth Estimation in Indoor 

Environments

PoseNet-based

Our system 

Input Image PoseNet Ours

Robustness Improved – NYUv2 



Depth Estimation in Indoor 

Environments

PoseNet-based

Our system 

Best performance on NYUv2 among unsupervised methods!

Robustness Improved – NYUv2 



Code and model are available here 

Check our paper for more details!

Link: https://github.com/B1ueber2y/TrianFlow

https://github.com/B1ueber2y/TrianFlow

