limap.point2d.superpoint package
Submodules
limap.point2d.superpoint.main module
- limap.point2d.superpoint.main.map_tensor(input_, func)
- limap.point2d.superpoint.main.run_superpoint(conf: Dict, image_dir: Path, export_dir: Path | None = None, as_half: bool = True, image_list: Path | List[str] | None = None, feature_path: Path | None = None, overwrite: bool = False, keypoints=None) Path
limap.point2d.superpoint.superpoint module
- class limap.point2d.superpoint.superpoint.SuperPoint(config)
Bases:
Module
SuperPoint Convolutional Detector and Descriptor
SuperPoint: Self-Supervised Interest Point Detection and Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629
- compute_dense_descriptor(data)
Compute keypoints, scores, descriptors for image
- compute_dense_descriptor_and_score(data)
Compute dense scores and descriptors for an image
- default_config = {'descriptor_dim': 256, 'keypoint_threshold': 0.005, 'max_keypoints': -1, 'nms_radius': 4, 'remove_borders': 4, 'weight_path': None}
- download_model(path)
- forward(data)
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- sample_descriptors(data, keypoints)
- training: bool
- limap.point2d.superpoint.superpoint.remove_borders(keypoints, scores, border: int, height: int, width: int)
Removes keypoints too close to the border
- limap.point2d.superpoint.superpoint.sample_descriptors(keypoints, descriptors, s: int = 8)
Interpolate descriptors at keypoint locations
- limap.point2d.superpoint.superpoint.simple_nms(scores, nms_radius: int)
Fast Non-maximum suppression to remove nearby points
- limap.point2d.superpoint.superpoint.top_k_keypoints(keypoints, scores, k: int)