TEL AVIV 2022

Motivation & Goal

Top: input sample Mid: **COLMAP** Bottom: **Ours** We propose a hybrid system to achieve accurate and generalizable **reconstruction**, which combines the best of both deep learning and geometric optimization.

Project Page & Code Check more materials in project page!

in-the-wild scenarios.

Method & Pipeline

Point trajectory is introduced as the core representation. The pipeline consists of three main modules named trajectory generation, trajectory motion segmentation and global bundle adjustment.

ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving Cameras in the Wild

Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, Yong-Jin Liu

Trajectory Generation

- 1. Compute dense optical flow
- 2. Connect optical flow to get the trajectory

Long tracking dirft error? 4. Optimize the trajectory by flow path consistency

3. Use forward-backward consistency

Transformer as encoder and **OANet** as decoder

Global Bundle Adjustment

The global bundle adjustment is performed on the **static trajectories** to optimize the camera parameters and 3d map points. We use rotation and translation average as initialization and conduct the bundle adjustment.

- Given a monocular RGB video of highly dynamic scene, we aim to recover the camera poses and reconstruct the **dense 3d geometry**.
- Unfortunately, current state-ofthe-art methods are **vulnerable to** dynamics, and fail to generalize to

Input sample

Mask-RCNN

MAT

Ours

Sample frames

	Methods	ATE (m)	RPE trans (m)	RPE rot (deg)
OLMAP subset	COLMAP [63]	0.145	0.035	0.550
	MAT $[95] + [63]$	0.069	0.024	0.726
	Mask-RCNN [25] + [63]	0.109	0.039	0.605
	Ours	0.019	0.005	0.124
Full set	COLMAP [63]	Х	Х	Х
	R-CVD [36]	0.360	0.154	3.443
	Tartan-VO [76]	0.290	0.092	1.303
	DROID-SLAM [72]	0.175	0.084	1.912
	Ours	0.129	0.031	0.535

DROID-SLAM

Methods

SIFT + Global BASIFT + MAT [95] + Global BATraj + Global BATraj + Optim + Global BATraj + Seg + Global BATraj + Optim + Seg + Global BA

COLMAP

Ours

Ablations

ATE (m)	RPE trans (m)	RPE rot (deg)	
X / 0.060 X / 0.054	X / 0.042 X / 0.055	X / 0.635 X / 0.621	
X / 0.054 X / 0.071	X / 0.033 X / 0.041	X / 0.969	
$\begin{array}{cccc} {\rm X} & / & 0.072 \\ 0.146 & / & 0.046 \end{array}$	$\begin{array}{cccc} {\rm X} & / & 0.042 \\ 0.039 & / & 0.015 \end{array}$	$\begin{array}{cccc} {\rm X} & / & 0.929 \\ 0.567 & / & 0.212 \end{array}$	
A 0.129 / 0.042	0.031 / 0.013	0.535 / 0.199	