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This document provides a list of supplementary materials that accompany the
main paper. The content of this supplementary material is organized as follows:

— In Section [A] we provide details on the construction and maintenance of
vanishing point tracks during the reconstruction process.

— In Section [B] we present detailed derivations for uncertainty propagation
from the 2D observations to the 3D points and lines bundle adjusted across
views. In particular, we show how to use sensitivity analysis to derive the
uncertainty of the optimized 3D line in its Pliicker form. We further give
details on how to use the propagated uncertainty in the geometric pipeline.

— In Section [C] we present details on integration of point-line and VP-line
associations in the hybrid bundle adjustment. We additionally discuss on the
challenges on efficiency and some practical solutions on implementation.

— In Section we discuss how to use auxiliary vanishing point correspon-
dences to help improve absolute pose estimation (localization/registration)
by providing more combinations of minimal configurations.

— In Section [E] we provide more details on implementation, datasets and
experimental setup.

— Finally, in Section [F] we provide some additional results to support the
content of the main paper.

A Maintenance of Vanishing Point Tracks

As mentioned in the main paper, when a new image is registered, we not only
triangulate and update the 3D points and lines, but also construct vanishing
point (VP) tracks to model the parallelism relations among lines. In practice we
find that the VP matching is a relatively easy task such that computing from the
consensus of line matches generally gives very reasonable results, thus making
VP a good resource to help improve the structures of the 3D line maps. A 2D
VP feature is represented with a 3-dimensional homogeneous coordinate, which
equals the 3D direction in the local frame left multiplied by the intrinsic matrix.
Thus, the cross-view consistency check for VP only involves checking the angle
between two 3D directions.

Similar to points and lines, the incremental update of the VP tracks involve
all the required operations as follows:

* Equal contribution
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— Continue: extend an existing VP track. Given a 2D VP feature, we first test
if there exists a matched VP (in the previously registered images) that is
already triangulated in the map and test if the reprojected 3D direction is
within 3 degrees compared to the local one from the 2D VP. If so, we add
the VP into the corresponding track.

— Create: triangulate a new VP. If we are unable to assign a VP to any
existing track, we try to create a new 3D VP track. Since a 3D VP is a
special point feature that only encodes rotation information, it has only 2
degrees of freedom in total, making the two-view triangulation problem even
more overconstrained. In fact, the 3D VP direction can be computed from
only one view, and the multi-view triangulation of VPs can be easily achived
by taking the average over all the computed directions. Thus, we perform a
simple RANSAC loop by iterating over all directions, taking the best one
with the most agreement, and computing the average of all the agreed VPs
to get the final 3D direction of the newly created VP track.

— Merge: merge two VP tracks into a single one. We attempt to merge VP
tracks after the triangulation of each newly registered image. Though the
VP merging can be done solely on the sphere due to its limited DoFs, in our
system we require shared visibility for the VP track merging to avoid wrongly
chained associations from noisy tracks. Specifically, we test only on pairs of
VP tracks that share at least three matches among their supports, and check
if their direction is within 3 degrees. If so we merge the two together and
recompute the 3D VP using all the supports by taking the averaged direction.

— Complete: recollect supports. We test reprojection agreement on the neigh-
bors of the included supports in the matching graph to collect potentially
missing supports. This is similar to the practices for points and lines as
discussed in the main paper.

By iteratively performing those steps we can maintain 3D VP tracks of
reasonably good quality, which not only enables richer 3D maps with structural
information but also helps on both the refinement and registration.

At the step of hybrid refinement, the presence of VP can help regularizing the
line maps by enforcing structural constraints. We perform the active supports
caching and two-step refinement on the VP tracks as discussed in the main paper.
Specifically, we only use the VP tracks with at least three active supports at pose
optimization, and perform fixed-pose VP optimization and active label update
afterwards. The fixed-pose VP optimization only involves a straightforward multi-
view triangulation process. As previously discussed, we perform a one-point
LO-RANSAC [6] by iterating over all the supports, selecting the best one with
the most agreement, and taking the average over all the inliers.

B Full Derivations on Uncertainty Propagation

In this section, we provide detailed derivations on propagating uncertainty from
2D observations to the optimized 3D line. In the following parts, we first provide
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some backgrounds on covariance propagation and the representation of 3D line.
Then, we present the proposed formulation with the assistance of sensitivity
analysis and provide details on the validity tests. Finally, we discuss how to use
the acquired 3D uncertainty at refinement and registration (localization).

B.1 Background

Covariance Propagation For a standard non-linear least squares problem with
the optimized variable & and the observations y:

@ = argmin| /(@) ~ y|* (1)

we can directly propagate the uncertainty from the observation y to the
optimal solution * upon the assumption that the noise of the observations y
follows the distribution y = f(x) + N(0,1). This can be achieved as:

Sow = (JF (@) Jp(x*) 7, (2)

where Jy is the Jacobian of the function f(-). This corresponds to using the
approximate Hessian as in [22].

For a non-uniform distribution y = f(x) + N (0, S), the clean formulation is
provided in [1] when the residuals in the least squares problem is rescaled with
S~/2 which is generally the practice in factor graphs [7]. With the original
formulation, one can also use the first-order approximation [25] for propagating
covariance from the observation noise in the linear form:

ox* am*T_aa:* ox* T
oy Yoy 0y 0Oy

S = (3)

ox*

By TH@") = (Jf (") T 5 (")) T (z¥) (4)
where J;E corresponds to the Moore-Penrose Inverse of J;. In our case, the

discussion above applies to the 3D point optimized with the reprojection error

across multiple views, where the function f corresponds to the perspective

reprojection and Jy is its Jacobian.

Note that this only applies to the case where the error uncertainty can be
directly propagated from the observation uncertainty. In other words, the partial
derivative of the residual over the observation is not dependent on the optimal
x*, which can be formulated in the context of non-linear least squares regression.
However, the multi-view line optimization with the endpoint-to-line distance as
residuals does not fall into this category, as discussed in Sec. [B:2}
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Representation of an Infinite 3D Line While in the final reconstruction a 3D
line is represented with its two endpoints, its optimization across multiple views is
generally operated on its infinite form due to inconsistent endpoint observations
in 2D. This optimization is followed by endpoint unprojection to decide the
spatial extent of the 3D line segment. Note that the infinite form is more crucial
as it is used in both bundle adjustment and localization, while the endpoints are
mainly for correct track merging, robust point-to-line association and final map
visualization. Thus, to be able to correctly propagate the 3D uncertainty for a
optimized 3D line across views, we need to first study the representation of a 3D
infinite line in the optimization.

An infinite line has 4 degrees of freedom (DOF) and is generally represented

in its Pliicker coordinates [10]. In the optimization [14], the orthonormal repre-
sentation [4] of the Pliicker coordinates is generally used to minimally constrain
the 3D infinite line.
Pliicker Coordinates. A 3D line in Pliicker coordinates can be represented by
two vectors, namely L = [d m], where d is the direction vector of the line and
m is the vector normal to the plane containing the origin and the line. Given a
3D line segment with its two endpoints (xs, ), the Pliicker coordinates of its
corresponding infinite line is

L= [‘?S“ﬂ - [d} (5)
Ty X T m
where & denotes the homogeneous coordinates of the endpoints and d, T refer to

the the unnormalized vectors. Note that Pliicker coordinates are a homogeneous
representation, so all pairs [ad afn] (o # 0) represent the same infinite line.

We use here L = [{i fn] to denote the unnormalized Pliicker coordinates and
L = [d m] to denote normalized Pliicker coordinates (displacement ||d|| = 1), so

that we have ~
1
[ 2
ml ] (™

In this way, the Pliicker coordinates establish a one-to-one correspondence between

the 4 DoF infinite lines and points.

Orthonormal Representation. Since the Pliicker coordinates are over-parameterized,
we follow [14] to use their orthonormal representation during optimization, which

was initially introduced in [4]. Specifically, the 4-DOF minimal representation of

the Pliicker coordinates is formulated as & = [0, p] € R*, which can be computed

by QR decomposition.

L = [dim]
I
= [ wmm v [ Ol
00 (7)
w1 0
xU [ 0 wy
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Then, the orthonormal representation of a line can be formulated as

L(®) = (U(0), W (p)) € S0(3) x 50(2), (®)
where )
v we[no [0 o

So the Pliicker coordinates can be represented as

Bl e

m Wals sin(p)us

Note that here we use axis-angle representation at uncertainty derivation for
U(6), such that 8 = 0n, where 6 is the rotation angle and 7 is the rotation axis:

-1
0=10| = arccos(%) (11)
0 1 Uz, —Uss
N=1r=5="a7 |U13~Us (12)
0] = 2 fol |5 " g

Projection Matrix for Lines. For lines in their Pliicker form, the perspective
projection can be done by either constructing the Pliicker matrix [10}|14] or
constructing the projection matrix for lines [10]. We use the latter one for the
simplicity at derivation which is formulated as:

b
=P L= |y, (13)
I3

where I are the unnormalized coordinates of the back-projected 2D line and P is
the line projection matrix. The construction of P; can be done as P; = [K ! O} H,
where:

fo 0 0
] K;=| 0 f. o0 |. (14)
_fvcu _fucv fufv

Here f,, f, denote the focal lengths, (c,, ¢,) denotes the location of the
principal point, and (R, t) denote the extrinsic parameters.

]« R R

H:[R 0

B.2 Covariance Propagation for the Optimal 3D Line

Residuals: Endpoint-to-Line Distance For the refinement of a 3D infinite line
across multiple views, we optimize over its minimal parameters & = [0, p] € R*
with respect to the line reprojection error, which is generally formulated as the
perpendicular distance [14] from the two endpoints of the 2D line observation.
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Denoting the two endpoint as & and . and the perpendicular distance function
as D(+), the line reprojection error can be formulated as:

- - [ - | <15>

V1243
where (@) = II(L(®P)) is the reprojected line on the image with perspective
projection I1. Then, the optimization problem across Nj different views can be
written into:
N s,e

& — arg;ninE = arg;nin % zk: Z[D(acg?, I, (L(®)]2)). (16)

Here E is the optimization objective and Iy is the line reprojection function for
the kth view. Different from points, the residuals described in Eq. cannot be
written in the standard from of non-linear least squares problem as in Eq. . In
particular, taking the derivative of the endpoint-to-line perpendicular distance
D(-) we have:

oD(z,l) l oz (17)
ox /12 +12 ox
0D(x,1 1 - . X ,
(@) _ (3" — 3"l [ty i 0)) (18)

ol NG
Note that in Eq. , the derivative of the error over the measured endpoint
x depends on the reprojection I, which is dependent on the optimal parameters
&*. This is a main difference from the point case and prevents the optimization
problem to be written in the standard form as in Eq. . Thus, the uncertainty
of the optimal 3D line is intractable with the Jacobian-based propagation in the
least squares form with first-order approximation as in Eq. .

Second-order Sensitivity Analysis We propose to perform uncertainty prop-
agation for the optimized 3D line using second-order sensivity analysis [9]. As
mentioned in the main paper, this relies on the fact that:

OF
“|p_gs =0 19
55 |2-% (19)
Note that here @* is an implicit function of the input xf (j € {s,e}, k =
0,1, ..., Ni). Thus, we have the following property:

0’FE

prrmat ot iy (20)
J

This can be used to derive the target Jacobian 0P*/ 893?, which can enable
uncertainty propagation with Eq. . Specifically, relating Eq. the left-hand
side of Eq. becomes:
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1P[D(, UP))> _I(D(w, L)) 225H2N

AD(x,1(P))) D (x, L(P)) O*D(zh, IT;,(L(P))

0% N 7

_0D(=,U(®))) ID(,1(®)) a(aDg(g;w) o) )
=3 o +D(m,l(45))< )

_ OD(x, 1(®)) OU(P) ]BD(a:,l(é)) oz D(w, z( )) ) 0
=T o) 0% ( oz ozt | oU®) 045 8m>

D (x, (P OD(w, (P
ODEAE) oy 9P oy ) o2 | o1()

oxr  oxk ol®) 0P dxt’ 0P
OD(x,l(®)) O°L(P) 0P
ol(®) o®® Oxt

D(z, 1(®))(

D(x,l(P)) (25)

- (L(SP)]Q))

R

With the denotation lk(é) = Hk(L(SP)) we have:

10°[D(xf, I (L(P))]* _ 10°[D(xf, lx(P)))?

- == 22
2 8@39}? 2 8455‘33;? (22)
Since we have the following property for the first-order derivatives:
O[D(z,U(®))]” _ ID(x,l(2))
e PN g
B OD(z, (D)) Ol(P)
O[D(z, (P)))? ID(z, (D))
—— = =2D(x,|(P)) —————

_ 2D(w,l(¢))(w%a@$+

OD(x,1(P)) Ol(P) OP
oe)  od m;) (24)

Combining Egs. and we can get the full expansion for each term of

Eq. in Eq. (25).

By reorganizing Eq. and measuring at $* we can get a linear equation
with respect to the target Jacobian 0®*/ 83:?. Since most terms can be computed
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in a straightforward manner, we here only provide detailed solutions for computing
the first-order derivatives dl(®)/d® and second-order derivatives 921(®)/0D> of
the reprojected line with respect to the minimal parameters &.
Computation of First-order Derivatives 0l(®)/0®P. According to the chain
rule, we have
oLP)  Ol(P) OL(P) OL(P)
0®  OL(®) oL(®) 0P '

(26)
where the Jacobian from reprojected line to the 3D line in its Pliicker coordinates
is:
ol(P)
OL (D)

The Jacobian from normalized Pliicker coordinates to unnormalied Pliicker
coordinates is:

=P =K 0 H (27)

v _ 11
or@) ~jay " a0 >

In the following part, we derive OL /0®. Although the derivation of this term
has already been studied in previous literature [4,32], we will provide the solutions
for completeness.

As stated in Eq. , the Pliicker coordinates of an infinite line is

@) = 20,0 = 1] = [ )

Since we have U € SO(3), we can compute its derivative in the Lie algebra,
which is the space of skew-symmetric matrices

s0(3) = {0" e R39 c R} (0" = [0]5) (30)

According to Rodrigues Formula, the closed-form expression for the exponential
map from s0(3) to SO(3) is

sin\|0||) N (1—cos||0||
€] 1612

U=exp(8") =1+ ( )92 (31)

Combining Egs. (1I) and (12)), The logarithm map from SO(3) to so(3) is

a|
i 2sin\|0||( ) (32)

According to Baker-Campbell-Hausdorff Formulas, the permutation in s0(3) and
SO(3) is related as

U (6 + 80) = exp((0 + 60)") = exp((J,60)") exp(6™)
=T +[JLé0])U, (33)
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06 660

) 50 ) 50
sin(p) (I+[J 1, 86]x )uz —sin(p)usz —sin(p)[uz]x J 1,86
860 80

OL(9,p) _ L(6+86,p) — L(6,p) _ [“’S(P)(”Uwe]xmcos(p)ul} - |:605(p)[u1]xJL59:|

_ *COS(P)[ul]xJL} _ [*wl[ul]xJL:| (35)
—sin(p)[uz]xJ L —walua]xJ L
OL(8,p)  L(8,p+dp) —L(0,p) [—sin(p)u]  [—wous (36)
op 5p T | cos(p)us | T | wius
where Jp, is the left Jacobian of SO(3) matrix:
1—cos||@ 0| —sin |0

In this way, we can calculate the derivatives as in Egs. and . Com-
bining the two equations we have the final Jacobian:

OL(®P) _ —wi[u1]xJ L —wauq
0P —walue]x I wiug

(37)

Backsubstituting into Eq. we can correctly compute Ol(®)/0P in the
end.
Computation of Second-order Derivatives §%l(®)/d®>. To be able to
extend the derivation of the first-order derivatives, the only missing term from
previous derivation is the second order derivatives of the unnormalized Pliicker
coordinates over its minimal parameters @, i.e. 322}/ 0P

Here we derive 2L /0®°. From Eq. we have:

8L(45) _7w1[ul]><JL — WU
oP | —walua]x J L wiug

[wn gt wi gt wi gt gtun]

w1 Gt wy G wy Gl Gy,

w Ousy w Ousy w Ousq 8w1u

IUQ%LQ? wa 8312222 w283u79232 85':,2 U2
1 2 3 4

Then we have

oL
Ouip ﬁij(
89j w1

oL
Ouip aTﬁ(i+3)j(

89j w2

1<i<3,1<;5<3) (39)

1<i<3,1<j<3) (40)
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A 00 0 A 001 A 0-10
90 =100-1 ,89 =1000 ,80 =1100 (48)

961 01 0] 9% ~100| 9% 000

Since for —w;[u;]xJ (i = 1,2) we have:

3(—wz[uz]xJL) - 8[uz]x 8:][,

56 = —wi( T T+ il ) (41)
8(—wi[ui]><JL) awl

— ) 42
o 5y T (42)

we can use Eqgs. and to compute 9[u;]x /96. Then, we only need to
derive 0J 1,/00. Furthermore, according to Eq. , we have:

Jr =1+ f,0" + [,0"2, (43)
where f; and f;, are defined as:
1 —cos|6] [[0]] — sin]|6]]
fo= fh= (44)
! 161> 1]°
Thus, we can compute each component as follows:
oJr, 8fg 0" 00" ofy 02 00" . 00"
—_— = —_— 4
a6 000 tligg T og? T IhGet t05e)  (49)
Ofy _ sin0] (COSH9|| -1
49— 0T 46
N 7 R 7 1o
Ofn _ 1 —cosl|]  3(sin|[0] —[|6])), 7
I + 0 47
o6 o’ o o

where the partial derivative 98" /0 can be computed as in Eq. .

Extension to Loss Kernels In practice the robust loss function is generally
used to fight against the potential presence of outliers. In our system we use the
Cauchy loss function following [14]. These robust loss functions are equivalent
to applying a non-linear kernel function on top of the original residuals, which
corresponds to the following objective:

&* = argmin E,
. i

= argin o >, Zg([D(wﬁ,Uk(L(@)F))) (49)

Here without loss of generality we denote g(-) a kernel function that operates
on the squared error, with £, denoting the full optimization objective. Following
the same practice as in Eq. , we have:
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0*E,
=0. 50
8458:1:;? (50)

Since the first-order derivative over € can be written as:

a(;g([p(m,lk(di))]Z‘)) 1, 0[D(z,1,(®))?

= — S (TSI (51)
1173 AP (@l (8))]2 - 2 r 1 9[D (=l (#)]?
9(39'() am}ja@ ) _ %G[D( élé;(‘ﬁm )Taagw(;c) +g/(,)82 m;zqs
1, . 0%D(x,1(®)))?
290 gt (52)

by expanding the LHS of Eq. (50) we have the form in Eq. . Note that
the three derivative terms in Eq. (52]) have all been discussed in the previous

section with the naive loss function. Thus, we can safely extend the derivation
from Sec. [B:2] to complete the follow-up second-order sensitivity analysis to get
the target Jacobian @* /dxk.

Validity Test Our analytical uncertainty propagation on both points and lines
have all been validated with numerical tests. Specifically, we can make small
perturbation on each input observation w? and perform optimization on top of it,
which enables us to compute the Jacobian 0®*/ &Bf numerically. All the entries
in the Jacobian matrix have less than 1% deviation between the numerical and
analytical results.

We further perform a correlation test between the propagated 3D uncertainty
and the map precision on the delivery area scene from ETH3D [24], as shown
in Fig. 4 in the main paper. For each point track and line track, we not only
compute its analytical 3D uncertainty but also measure its distance (distance
from the nearest point for each line) to the groundtruth scans provided in the
dataset. For points, we use the squared root of the maximum eigenvalue of the
3x3 point covariance matrix as the scalar-valued point uncertainty. For lines,
we first propagate the 3D uncertainty on the optimal infinite line into the two
endpoints as discussed in Sec. [B:3 and take the squared root of the maximum
eigenvalue between two endpoints as the scalar-valued line uncertainty. Then, we
sort the points and lines into five bins with respect to its 3D uncertainty, and
compute the precision for each bin at lem / 3cm / 5cm. Results from Fig. 4 in
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the main paper show clear correlation between the propagated 3D uncertainty
and the map precision.

B.3 Applications of the Propagated Covariance

Uncertainty Propagation for 3D Line Segments The propagated 3D
uncertainty for each optimal line is represented in a 4x4 covariance matrix on its
minimal parameters @. To get a geometrically meaningful uncertainty we can
propagate the covariance matrix onto its 3D endpoints using the 3D point-to-line
projection in Pliicker form:

X, =X+dx(m+dxX), (53)

where X | is the projection of X on the 3D line L = [d m} in its Pliicker form.
Thus, we can easily compute the covariance of the 3D endpoint X (without loss
of generality we consider the starting endpoint X, here) using the operation of
projecting it onto the line:

_ aXsL 8X3LT

XX T g T og (54)
aXsL _ aXsLai
obd =~ OL 0P (55)

Note that here we have X,, = X, since X, naturally lies on the infinite
optimal line. Here we give the solution of the term 90X | /OL as follows:

0X

o = ld)x (56)
(9Xl T T T

2 =—[m|x +(d" X) I +dX* —2Xd (57)

In this way, we can get a 3x3 covariance matrix for each endpoint of the
line through the whole uncertainty propagation from the noise of 2D endpoint
observations.

Scale-Invariant 3D Uncertainty To be able to identify noisy points and lines,
we can use the scalar-valued uncertainty. This can be computed as the squared
root of the maximum eigenvalue of the point covariance matrix and endpoint
covariance matrix (described in Sec.|B.3) respectively.

However, to make it general, we need an uncertainty measurement that
is relatively invariant to the scale of the scene, since the SfM reconstruction
naturally exhibits the gauge ambiguity that makes the camera poses optimal only
up to a similarity transformation. To deal with this issue, we propose to use the
information from the supporting views for each track to rescale the scalar-valued
uncertainty. Specifically, for each track, we divide the scalar-valued uncertainty by
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Fig. 1: Visualization of the uncertainty of reprojection error for 3D lines at different
measured locations. Different from points, the uncertainty of the line reprojection error
(point-to-line distance) depends on where it is measured.

the median value of "depth over focal length" across its supporting views. In this
way, we get a scale-invariance 3D uncertainty that is in the unit of pixels. If the
focal length is the same across views, this scale-invariance measurement can be
geometrically interpreted as the reprojection uncertainty from the least reliable
views at a certain distance. The measurement is used to identify unreliable tracks
in the refinement (as shown in Fig. 10 in the main paper).

Reprojection Uncertainty As discussed in the main paper, a point/line track
with large 3D uncertainty may still be reliable at certain views for localization.
Thus, to reweight correspondences based on the 3D uncertainty from the map
perspective, we employ the reprojection uncertainty with respect to an initial
pose rather than the global one. This can be achieved by propagating the 3D
uncertainty on the infinite line parameterized by @ to the uncertainty of the
reprojection error, which is again formulated as the endpoint-to-line distance (as

in Eq. (15)).

It is worth noting that different from points, the uncertainty of the reprojection
error not only depends on the optimal 3D line, but also depends on the location
of the measurement on the image. This is illustrated in Figure [} The geometric
interpretation is that: with the perturbation on the 3D infinite line with its
uncertainty, the corresponding reprojected 2D line will move and rotate in
the image plane. This can potentially form a relatively stationary region that
has stably small reprojection error. Thus, measuring reprojection error in such
regions with small reprojection uncertainty gives more reliable information on
the reliability of the absolute pose proposal, therefore improving the accuracy
and robustness of the localization results. The visualization of the reprojection
uncertainty can be found in Figure [7] and Figure 11 in the main paper. We also
show that the uncertainty-aware reweighting is able to contribute to consistent
improvement under both point-alone and hybrid setup (as in Table 8 in the main

paper).
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C Integration of Structural Associations

Inspired by LIMAP [14], we integrate structural constraints at both triangulation
and refinement by modeling point-line associations and VP-line associations.
Specifically, the 2D point-line association graph for each image can be easily
constructed with 2D point-to-line distance, and the 2D VP-line association graph
naturally emerges from the VP estimation [29).

At triangulation, we directly follow the practice of LIMAP [14] to generate
proposals from neighboring points and vanishing points to fight against the
degeneracy issue of two-view line triangulation. At refinement, we can add soft
constraints similarly to LIMAP [14] between points and lines, lines and VP by
counting the connections of the corresponding supports on the 2D association
graphs. While this appears to be beneficial on the quality of reconstruction and
the pose accuracy, the integration of association residuals unfortunately breaks
the blockwise property of the bundle adjustment Jacobian.

The general practice for efficient bundle adjustment involves matrix partition-
ing and the exploitation of Schur complement |2}|30], which largely benefits from
the fact that the 3D map (points and lines) and the cameras form a bipartite
graph in the optimization objective. However, the association residuals add edges
among points and lines, making it unable to reorganize the Jacobian into the
form where each point and line makes a block at the map side, inducing more
off-diagonal entries in the corresponding submatrix of the Hessian for the map.
While we can still perform the Schur complement trick in the larger block with
connected component analysis, the relatively dense connections from the current
design of using soft residuals can lead to huge blocks that significantly affect the
efficiency. Nonetheless, since the Jacobian is still sparse and many soft residuals
are not necessary, there is large room for efficiency improvement with more careful
implementation. Also, the one without point-line association already achieves
very promising results as shown in the main paper.

Note that the VP-line association does not suffer from this problem, since
the VPs can be viewed as special cameras and thus moved to the camera side,
keeping the graph from the optimization objective a bipartite.

D Absolute Pose Estimation with a Vanishing Point
Correspondence

Since we additional construct and maintain the vanishing point (VP) tracks
in the hybrid map, when registering a new image we have additional 2D-3D
vanishing point correspondences from traversing the matching graph. This gives
additional constraints on the rotation matrix. Specifically, one 2D-3D vanishing
point correspondence gives constraints on 2 degrees of freedom on the absolute
rotation, and a second one gives one another constraint on the final degree of
freedom, which leaves a non-minimal overconstrained system. In this paper we
only focuses on using a single vanishing point correspondence in the minimal
estimation inside the hybrid RANSAC framework [5].
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D.1 Relation to Gravity-Aligned Solvers

The presence of a single 2D-3D VP correspondence (va4, v34) gives the constraint
on the rotation R as follows:

Ruzg = vag, (58)

where vy is the unnormalized VP direction in the local frame. This gives two
degrees of freedom for the rotation matrix R. Note that the constraint is equivalent
to the gravity-aligned absolute pose estimation [13] with a tilted gravity direction.
Thus, we can first rotate the system to align the 3D VP direction to the y-axis to
employ all advances under the context of gravity-aligned absolute pose estimation.
With two DOFs constrained in the rotation matrix, the absolute pose has 4 DOFs
left, which can be reduced with 1) two 2D-3D point correspondences; 2) one
2D-3D point correspondence and one 2D-3D line correspondence. Note that two
2D-3D line correspondences do not work in this case due to dependent constraints
on the rotation.

D.2 Gravity-Aligned Absolute Pose with Two Point Correspondences

The gravity-aligned absolute pose estimation with two point correspondences is
initially studied in |13]|. The main idea is to parameterize the final DOF of the
rotation matrix in the polynomial form as follows:

1-¢> 0 2q

1+¢>2 0 , g€ER (59)
—2q 0 1—¢?

1
1442

R(q)

From one 2D-3D point correspondence (x, X) we have:
[Z]x(RX +t)=0 (60)

With the availability of two such equations the problem can be finally reduced to
a quadratic polynomials in g, which can be solved in closed form [13].

D.3 Gravity-Aligned Absolute Pose with One Point and One Line
Correspondences

Similarly, given one point correspondence (x, X) and one line correspondence
(£, L) it is also possible to recover the camera pose under known vertical direction.
Let the 3D line L be parameterized as t — X, +tV 1, then we get the following
constraint on the camera rotation

"RV, =0. (61)

Using the same parameterization as in Eq. , this yields a quadratic equation
in g which can be solved in closed form. Once the rotation is recovered, we have
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three linearly independent equations left,

[€]« (RX +t) =0, (62)
T(RX [ +1t) =0, (63)

from which we can recover the translation ¢.

E More Experimental Details

E.1 Implementation Details

Our system is implemented in C++ with Python bindings. We follow the overall
design of COLMAP |23] and use the same hyperparameters for the point part,
which enables fair comparison between “point" and “hybrid" setup. For the scoring
at line triangulation and hybrid bundle adjustment, we follow LIMAP [14] for
the parameter choices. The line tracks are optimized with a Cauchy loss with
parameter 0.25. For the registration, we use the same weight for points and lines
at scoring and local optimization.

Similar to all existing SfM methods, those hyperparameters in our system
can be changed by the users for both practical and research purpose, while using
our default parameters at release should already work reasonable well on most
in-the-wild cases.

We use the same hyperparameters across all the experiments. For the point
feature, we use “SIFT" [15] + “NN-ratio" and “superpoint _max" [8] + “superglue
outdoor" [21] from HLoc |20]. For the line feature, vanishing point estimation,
and construction of 2D association graph, we follow the official implementation
of LIMAP [14]. We use exhaustive matching for both the point-alone baseline
COLMAP 23| and our method across all datasets.

E.2 Datasets and Evaluation

We test the proposed SfM system on multiple public datasets to verify its
effectiveness. We mainly use the following two metrics at the evaluation:

— Valid Registrations: While the number of registered images is often used
in the SfM evaluation, different methods can have different tolerance criteria
on rejecting the registrations. This can potentially make the evaluation
metric unfair when, for example, one system registers all the images with
some of them totally deviating from the groundtruth. Motivated by these
observations, we propose to evaluate using the valid registrations. Specifically,
we first perform robust model alignment between the SfM predictions and
the groundtruth and then count the number of images that are within 5cm /
5deg to the groundtruth. In our implementation we use the interfaces from
COLMAP |23]| for robust alignment.
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— Relative pose AUC: Following the general practice on SfM evaluation |11],
we compute relative pose errors over all image pairs exhaustively with respect
to the groundtruth. For those pairs with one or both images not registered in
the SfM reconstruction, we set a maximum relative pose error of 180 degree.
AUC at different thresholds (in degrees) are reported on all the errors.

Hypersim [19] is a photorealistic synthetic dataset that is used for holistic
indoor scene understanding. We follow the practice of LIMAP [14] to test on the
first eight scenes and resize the image to a maximum dimension of 800. Each of
the scene has around 100 images. The average across all the tested scenes are
reported for each metric. For the evaluation of line reconstruction in Table 5, we
use the evaluation tools in the code release of [14].

ETH3D [24] is a real world dataset that includes unordered images in both
indoor and outdoor environments. We use the training split of DSLR images,
which has a total of 13 scenes. We resize each image to a maximum dimension of
756, which is of the same size of the provided groundtruth depth images. This
makes it faster to run our default line matcher GlueStick 18], while advances on
the efficiency of line matching can further reduce the runtime at feature detection
and matching. For evaluation we use the same two metrics as discussed with
respect to the groundtruth poses provided in the data.

We further validate our method on the PhotoTourism data [27] from Image
Matching Benchmark 2020 [11]. Specifically we test on the validation split which
consists of three scenes in total: Reichstag, Sacre Coeur, and Saint Peter’s Square.
The official setup [11] runs COLMAP [23] on all images as a pseudo groundtruth
and evaluates on a collection of small bags. Not only does this induce a small bias
towards point-based methods, but the dataset is also with limited presence of
structured line features. Nonetheless, we still show consistent improvements over
point-alone methods with different types of features. Note that since the official
groundtruth construction on this dataset employs a radial distortion model which
does not favor line detection, we first perform undistortion on all the images
and run SfM for both our system and the baseline COLMAP 23] with known
intrinsics on the undistorted images.

E.3 Details on Visual Localization

To verify the effectiveness of our uncertainty-aware visual localization module, we
perform visual localization experiments on two public datasets: Cambridge [12]
and 7Scenes [26]. We follow the same experimental setup of HLoc [20] and
LIMAP |[14] to ensure fair comparison. Specifically, we use the triangulated point
map from COLMAP |23] and line map from LIMAP [14]. We use NetVLAD 3]
for image retrieval and SuperPoint [8] + SuperGlue [21] as the point feature
for both datasets. For line features, following LIMAP [14] we use LSD [31] on
Cambridge and SOLD2 [17] on 7Scenes [26].
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20% 50% 70% 100%

Fig. 2: Incremental line reconstruction during SfM. Parallel lines from line-VP
association are colored the same.

Fig. 3: Comparison of our proposed incremental line triangulator (Right) with the
state-of-the-art global line triangulator (Left) |14]. Without the need of getting all the
posed images beforehand, our incremental triangulator achieve robust line reconstruction
of comparable quality with the global counterpart.

F Additional Results

We show qualitative results on the incremental process of hybrid reconstruction
during SfM and the visual comparison with the global line triangulation from [14]
in Fig. [2] and [3] We also show qualitative examples of our hybrid reconstruction
on PhotoTourism [11]. Our method is able to reconstruct reasonable 3D maps of
hybrid features from as few as 5 images.

Figure [§] shows an example on the effects of caching inactive supports and two-
step refinement. The 3D lines are triangulated and removed repeatedly with the
naive strategy, while the proposed mechanism keeps the temporarily unreliable
supports and tracks while isolating them from the pose optimization.

We further show visual examples of our propagated 3D covariance on the
reconstructed 3D lines in Fig. [f] With the principled uncertainty propagation
our method can explicitly identify noisy lines from few views and degenerate
configurations (horizontal lines cannot be reliably reconstructed with parallel
horizontal motion). We also show another visual example of the effectiveness of
the rejected uncertainty in Fig. [7}

To further verify the improved robustness of our proposed system, we run both
COLMAP |23] and our hybrid SfM method on the recently introduced LaMAR
dataset [22]. LaMAR [22] is a new large-scaled dataset that is captured using
AR devices in diverse environments. We use the hetrf sensor from the HoloLens
query validation data which consists of 12 sequences. Table [I] shows results
with SuperPoint [8] + SuperGlue [21]. While the dataset is very challenging,
we manage to get consistent improvement over COLMAP |23|, thanks to the



Supp. of Robust Incremental Structure-from-Motion with Hybrid Features 19
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Fig. 4: Our hybrid reconstruction with different small image bags from PhotoTourism
[11,/27]. Our method can achieve reasonable reconstruction from as few as 5 images.

Table 1: Structure-from-Motion results on LaMAR |22|. We report the relative
pose AUC for both our system (“Hybrid") and COLMAP (“Point") |23] on SuperPoint [8]
+ SuperGlue |21]. While we achieve consistent improvement over COLMAP |[23], the
dataset is very challenging due to low overlap and fast motion.

Dataset Point Feature Method AUC @ 3°/5°/10° ©
Point 2.8 7.9 14.5
LaMAR SP + SG Hybrid 4.0 10.8 18.5

inclusion of hybrid features. Nonetheless, there is still large room for future
improvement on this dataset, which can further benefit from temporal modeling.
This is beyond the scope of this paper and is left as the next-step future work.

Finally, we apply our proposed SfM system to the widely studied applica-
tion: view synthesis. Specifically, we run Nerfactos from NeRFStudio |16}28] on
both COLMAP [23] and our SfM predictions. Fig. [8| shows that our method
enables better view synthesis quality due to more accurate and robust camera
registrations.
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