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Abstract. Structure-from-Motion (SfM) has become a ubiquitous tool
for camera calibration and scene reconstruction with many downstream
applications in computer vision and beyond. While the state-of-the-art
SfM pipelines have reached a high level of maturity in well-textured
and well-configured scenes over the last decades, they still fall short of
robustly solving the SfM problem in challenging scenarios. In particular,
weakly textured scenes and poorly constrained configurations oftentimes
cause catastrophic failures or large errors for the primarily keypoint-based
pipelines. In these scenarios, line segments are often abundant and can
offer complementary geometric constraints. Their large spatial extent and
typically structured configurations lead to stronger geometric constraints
as compared to traditional keypoint-based methods. In this work, we
introduce an incremental SfM system that, in addition to points, leverages
lines and their structured geometric relations. Our technical contributions
span the entire pipeline (mapping, triangulation, registration) and we
integrate these into a comprehensive end-to-end SfM system that we share
as an open-source software with the community. We also present the first
analytical method to propagate uncertainties for 3D optimized lines via
sensitivity analysis. Experiments show that our system is consistently
more robust and accurate compared to the widely used point-based state
of the art in SfM – achieving richer maps and more precise camera
registrations, especially under challenging conditions. In addition, our
uncertainty-aware localization module alone is able to consistently improve
over the state of the art under both point-alone and hybrid setups.

1 Introduction

Estimating camera parameters and scene geometry from images, also known as
Structure-from-Motion (SfM), has enabled a wide variety of applications such
as augmented reality [77,80], novel view synthesis [41, 59], scene reconstruction
[48,107], etc. For SfM, the incremental paradigm that alternates between updating
the map and resectioning cameras is by far the most popular. This is due to its
comparably better accuracy and robustness, as well as having an active open-
source community with multiple well-engineered pipelines [79,86,102], of which
COLMAP [79] has become the de-facto standard SfM in the recent years.
⋆ Equal contribution
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Fig. 1: Incremental Structure-from-Motion with points, lines, and vanishing
points. Red: groundtruths. Blue: predictions. We show example indoor scenes where
classical point-based Structure-from-Motion fails. Leveraging additional constraints
from line segments, our pipeline can faithfully reconstruct the scene and cameras.

Most modern SfM systems heavily rely on the presence of stable feature
points in the scene, which are detected, matched, and triangulated into sparse
3D point cloud maps followed by repeated bundle adjustments and camera pose
estimations. This, however, regularly prevents these systems from providing
robust and accurate results in poorly conditioned scenarios, where the scene
has little texture and thus few feature points (e.g ., indoor scenes). Compared
to points, lines frequently appear in human-made environments where feature
points are sparse, they have a large spatial extent, and they often appear in
structured configurations offering additional geometric constraints (parallelism,
orthogonality, etc.). The idea to exploit more structured features, such as straight
lines, dates back to the early 2000s [6, 7, 14,78,93].

Despite these clear advantages, line segments are not used in the currently
available state-of-the-art SfM pipelines. This is mainly due to line reconstruction
coming with additional challenges compared to the point-based counterparts.
For example, lines are in general more difficult to describe due to often having
inconsistent endpoints across views. In practice, lines also suffer from unstable
degenerate configurations during triangulation (as extensively studied in [52]).
Moreover, while there has been great progress in feature point detection and
matching in the past decade, line detection and matching has received comparably
less attention. However, recently, significant progress has been made on line
detectors [34, 65, 68, 105] and matchers [1, 67] thanks to the advent of deep
learning, making it possible to revisit lines as features in SfM.

In this work, we introduce an end-to-end incremental SfM system that con-
sistently improves the robustness and accuracy over the state of the art by
incorporating hybrid features, including points, lines, vanishing points (VPs),
and their structured relations. Our technical contributions span across all the
three main steps of incremental SfM: triangulation, refinement, and registration,
introducing new robust mechanisms to reliably maintain structural features, and
incorporating uncertainty measurements to further improve the robustness. Our
system is consistently more robust and accurate compared to the widely used SfM
pipeline COLMAP [79], achieving more precise camera localization, richer sparse
maps, more valid registrations, and less catastrophic failure cases (cf . Fig. 1). By
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sharing our code as an open-source software, we hope to enable further research
on SfM as well as benefit downstream applications in the community.

Specifically, our technical contributions are listed as follows:

– System: We present the first end-to-end incremental SfM system that rigor-
ously integrates points, lines, vanishing points (VPs), and their relations.

– Incremental Mapping: We extend incremental triangulation operations
initially designed for point features to lines and VPs, leading to an incremental
line triangulator with comparable performance to the global triangulator
in [52]. This removes the need from [52] to get all the images posed beforehand.

– Refinement and Bundle Adjustment: We propose to explicitly identify
reliable/unreliable tracks with uncertainty modeling and apply two-step
refinement with cached inactive supports. This prevents prematurely filtering
unreliable line tracks in early stages, without sacrificing the pose accuracy.

– Registration with Hybrid Features: We estimate the 6-DoF camera
pose with points, lines and vanishing points together in a hybrid RANSAC
framework, employing three existing point-line solvers [113] and two extra
gravity-based solvers from a VP correspondence.

– Uncertainty Modeling for 3D Maps: We perform uncertainty propaga-
tion for both 3D points and lines. In particular, this paper introduces the
first analytical method to propagate uncertainties for 3D optimized lines.

– Uncertainty Integration for Refinement and Registration: We suc-
cessfully integrate uncertainty in both refinement and registration. Our
uncertainty-based registration improves upon the state of the art on public
localization benchmarks under both point-alone [75] and hybrid [52] cases.

2 Related Work

Structure from Motion. Incremental methods have traditionally dominated the
state of the art in SfM in terms of robustness and accuracy with an active research
community and several open-source software packages [60,79,86,102]. Different
from global SfM [16, 36, 60, 85, 90, 91, 101], incremental methods sequentially
register images followed by repeated local and global refinements. This approach
is usually slower but yields more robust and accurate results. The community
has made tremendous progress on efficiency and scalability [2,9,16,24,44,87,103]
as well as robustness and accuracy [15,17,19,20,46,63,72,79]. Over the last years,
COLMAP [79] has emerged as the de facto standard incremental pipeline for
SfM, with applications in many downstream tasks in computer vision [41, 59]
and beyond. Most recently, and orthogonal to our contributions, learning-based
pipelines have also been explored [92, 97–99, 104, 110], yet still being unable
to match the performance of COLMAP on large-scale scenes. Improvements
on using pixel-perfect features [51] and semi-dense matching [30] show great
potential and could be combined with our work. In this paper, we introduce a
scalable incremental SfM system, that is built upon the success of COLMAP,
while improving its robustness and accuracy by carefully incorporating structural
features into the entire reconstruction process.
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Integration of Lines/Structures in Geometric Pipelines. The idea of
improving SfM with line features dates back to the early 2000s. Bartoli and
Sturm [7] pioneered a full SfM system with lines, followed by Schindler [78] who
integrated Manhattan assumptions. Chandraker et al . [14] proposed a robust
stereo-based system on infinite lines. Work in the field of SLAM and visual
odometry [27,28,31,49,50,55,56,71,84,100,106,114] has focused on integrating
line features to improve the accuracy, yet only constrained to sequential data
and often with strong motion assumption (e.g ., from inertial data), while our
approach works on general, unstructured input. In recent years, researchers have
also made progress on incorporating lines and vanishing points (VP) in global
methods [33, 58] and exploiting curves in bundle adjustment [64]. However, none
of the previous works have developed a full end-to-end SfM system that can
in practice compete with COLMAP [79] in terms of versatility and robustness.
While lines intuitively provide benefits in terms of complementary and rich
geometric constraints [8,23,47,52,66,73,111], they come with significant practical
challenges [14,52] due to occlusion of endpoints and degenerate configurations
as well as inherent difficulties to match them robustly across different views.
The recent breakthrough developments on line detectors [65, 68, 96, 105] and
matchers [1, 65, 67], spur a renewed interest in the community to revisit the
problem of leveraging lines and their structural configurations [32, 52], which
is further approached with a learning-based solution in [11]. These prior works
have focused on 3D line reconstruction from given camera geometry. In contrast,
we develop a general method that solves the full SfM problem and thus jointly
benefits the robustness and accuracy of SfM estimation.

Uncertainties in Multi-View Geometry. Modeling of uncertainty is a long-
standing and important problem in computer vision [5, 10,22]. Throughout the
years, researchers have continuously made progress on modeling the uncertainty of
local point features [18,38,39,57,88,108] and their matches [26,61,109]. There were
also attempts on incorporating uncertainty measurements for radar odometry [12],
3D benchmark construction [77], multi-view stereo [42,70,82,112], etc. Despite
the breadth and depth of research in this domain, uncertainty modeling remains
challenging in practice and has not been embedded in a principled manner in
most SfM pipelines. Our work integrates principled uncertainty modeling into the
reconstruction process for improved robustness and accuracy. This is important
for the integration of lines, which, as we show, especially benefit from probabilistic
modeling. Building on top of the Jacobian derivation on the line reprojection
error [7, 114], we propose the first method to analytically model the uncertainty
of 3D optimized lines based on sensitivity analysis [21].

3 Methodology

In this section, we present our proposed SfM pipeline. Our method takes an
unordered image collection as input, with either calibrated or uncalibrated camera
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Fig. 2: Our proposed SfM pipeline exploits hybrid features including points, lines,
and vanishing points (VPs). We improve with technical contributions over all three
main components: registration, triangulation, and refinement, leading to richer 3D maps
(with uncertainty measurements) and more robust camera localization.

intrinsics. To be able to detect and match straight lines, we require the images
to have no radial or tangential distortion.

Fig. 2 shows an overview of the proposed pipeline. Our setup and overall
system design leverages the same incremental reconstruction approach as the
popular point-based SfM software COLMAP [79]. The system first performs local
feature detection on the input images and then matches pairs of images with
different strategies (exhaustive, sequential, etc.). Next, the procedure bootstraps
the reconstruction process with an initial image pair, followed by progressively
adding new images by alternating between camera registration, triangulation of
newly observed structures, and iterative local and global refinement using bundle
adjustment. The output of our system is a set of estimated camera parameters
and a sparse 3D map with hybrid local features: points, lines, VPs, and their
geometric relations. In the following parts, we detail the design of the three main
modules: mapping (Sec. 3.1), refinement (Sec. 3.2), and registration (Sec. 3.3).
Detection and Matching on Images. Instead of solely relying on point
features as in [79, 86, 102], we additionally detect and match lines and vanishing
points (VPs) across images. The detection and matching of lines can benefit from
any existing detectors and matchers. We take the state-of-the-art DeepLSD [68]
detector and GlueStick [67] matcher as our default choices. For VPs, we use
JLinkage [94] as the default detector. The two-view matching of VPs is done
through consensus voting from the matches of their associated lines. We consider
two VPs a good match if they share at least five line matches.

3.1 Incremental Update of Hybrid Maps

While incremental triangulation of points has reached a high level of maturity
throughout the years [29, 54, 79], the triangulation of lines and VPs has not been
studied in great detail. This is partially due to the natural challenges of line
triangulation, including inconsistent endpoints across views and occlusions as
well as more frequent unstable and degenerate view configurations (Fig. 3 shows
some examples). While LIMAP [52] recently introduced a global line mapper that
can robustly construct line maps from pre-computed posed images, incremental
triangulation of lines is drastically harder and requires a sophisticated update
mechanism. Different from points, the verification of a 3D line triangulation
requires at least three views, making it much more unstable when only a few
views are available. This happens especially in the early stage of the incremental
triangulation process or in scenes with sparse view coverage.
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Fig. 3: Line triangulation is sensitive to view configurations. Left: unstable tracks from
small baselines, few supports, or degenerate patterns. Right: an example stable track.

To address these challenges, we combine the techniques from global line
triangulation in LIMAP [52] and classic point triangulation [79] to build a robust
and efficient hybrid incremental triangulator for points, lines, and VPs.
Triangulating Lines from a New Image. Since line triangulation is inherently
unstable and cannot be verified by only two views, we require at least two
additional views to triangulate a 3D line. Thus, the incremental triangulation of
lines only starts after we register the fourth image. Equivalent to incremental
point triangulation, when a new image is registered, we aim to grow the currently
triangulated line map with the 2D line features from the new image using the
following two operations:

– Continue: extends an existing line track. Given a new 2D line detection l, we
first test if there exists a matched line (in the previously registered images)
that is already triangulated in the map and test if the reprojection π(L) of
the corresponding 3D line L agrees with l. Since there can be several such
3D lines, we first compute a score for each of the candidate 3D lines L in a
similar fashion as [52]. Denoting dperp the 2D perpendicular distance and
dang the 2D angular distance defined in [52], and τp and τa two thresholds (2
pixels and 5 degrees by default), our scoring function is as follows:

s(L, l) = min(e−(dperp(π(L),l)/τp), e−(dang(π(L),l)/τa)). (1)

Similar to [52] we additionally check if there is a sufficient overlap. We
select the 3D line L with the highest score, and if both errors are below the
thresholds, we add the line l into the corresponding line track.

– Create: triangulates a new line. If we are unable to assign a line segment to
any existing track, we try to create a new 3D line with two-view triangulation.
We use the same triangulation process as in [52], where a 3D line can be
triangulated from either direct algebraic triangulation, or point/VP-guided
triangulation. We refer the reader to [52] for the details of the triangulation.

We maintain a list of all the tracks that have been updated in the triangulation
process and apply non-linear refinement for each updated track. In the SfM
context, this refinement step shares similar functionality with the multi-view
point triangulation via singular value decomposition [79].
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To finish the triangulation for the new image, we merge line tracks that are
connected in the matching graph. In addition, we perform a complete step as
in [79] to collect potentially missing supports: given a line track, we consider the
neighbors of the current 2D supports in the matching graph, and add them to
the track if they agree with the reprojection of the 3D line. This appears to be
beneficial to improve the track length under the incremental setup.
Recomputation of Endpoints. While points are compact in 3D, the spatial
extent of the lines changes with their endpoints. Thus, although the infinite line
may remain unchanged when the tracks are extended and merged, we need to
update its endpoints to be able to correctly merge lines in the future. This is done
by unprojecting endpoints onto the infinite line with Plücker coordinates [7, 52].
Retriangulation of Long 2D Lines. Long 2D lines are generally more robust
than short ones since detection noise is averaged over more pixels. Thus, we force
2D lines that are longer than 100 pixels to create new lines through triangulation,
even when they are supposed to continue on existing ones. This helps build more
stable line tracks in the maps.
Building VP Tracks. In addition, we also maintain VP tracks to model the
parallelism relations among lines. Since a VP in 3D can be mapped from a single
view, its maintenance is much easier than lines. Consistency checks only involve
measuring the angle of two directions. Please check Sec. A in supp. for details.

3.2 Refinement of Hybrid Structure

After each new image is registered and triangulated, our system performs local
and global refinement on both the map and poses. While bundle adjustment of
point features is well studied [4,95], lines suffer comparably more from outliers
and instability after triangulation. On the one hand, during refinement, these
incorrect lines can potentially corrupt the entire reconstruction, especially in the
early stages of SfM when only a few images are registered. As such, we need to
be selective about which set of lines are added to the optimization problem. On
the other hand, we do not want to prematurely filter line tracks, as many of them
can become stable after more views are registered. In this section, we present
several mechanisms for keeping track of the reliability of line tracks and their
supports in the refinement process, without having to prematurely remove them.
Caching Inactive Supports. Due to unstable line triangulation from sparse
views, a good support can easily be an outlier at an early stage due to pose
perturbations in the refinement process. Deleting those supports will largely slow
down the mapping process and also drop a large number of potentially good
lines (see supplementary material for visualizations). Motivated by this fact, we
propose to instead attach to each support an active label. After each refinement,
we check all the supports and set their labels depending on whether it is currently
an inlier (active) or an outlier (inactive). We remove the inactive ones only when
a track becomes stable (has more than 10 active supports). To avoid the noisy
supports to be stuck in the wrong tracks, we include each inactive support at
triangulation and refinement. In this way, we keep the option for potential inlier
supports to become active later in the optimization.
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Propagating 3D Uncertainty from 2D Measurements. To be able to keep
the noisy tracks without affecting the pose optimization, we need to correctly
identify unreliable tracks. While the number of active supports makes a reasonable
indicator, lines suffer more from instability due to view configurations (see Fig. 3).
Therefore, we directly model the 3D line uncertainty with covariance propagation.
In this paper, we assume the detection of each keypoint and line endpoint follows
N (0,1), while more advanced modeling [57] can be integrated easily as well.

We start by revisiting the uncertainty modeling of points, where multi-view
triangulation can be formulated as a non-linear least-squares problem:

X∗ =
1

2
argmin

X

∑
k

∥rk∥2, rk = Πk(X)− xk, (2)

where the 3D point is optimized across views w.r.t. its 2D observations xk. For
such least-squares problems [3], the uncertainty can be propagated from the
observation to the optimal 3D point X∗ using the Jacobian J of the reprojection
function. With the assumption of unit covariance, this only involves inverting
the approximate Hessian JTJ (refer to Sec. B.1 in supp. for details).

For lines, however, the reprojection residual (denoted as ek) is generally
formulated as the endpoint-to-line distance dperp(Πk(L), lk), which cannot be
written in the least squares form due to the fact that the derivative of the residual
over the endpoint observation depends on the optimized 3D line. This makes the
3D uncertainty intractable with the previous formulation.

We propose to tackle the problem with second-order sensitivity analysis [21],
which relies on the fact that the derivatives of the non-linear objective (denoted
as E) over the optimized variables is always zero at the optimal 3D line L∗:

∂E

∂L
|L=L∗ =

∑
k

ek
T ∂ek
∂L

|L=L∗ = 0 (3)

Since the derivative of the left-hand side of Eq. (3) over the input endpoint
observation lk (i.e., ∂(∂E/∂L)/∂lk) always equals the zero vector at L∗, we can
derive a linear system that solves for the target Jacobian ∂L∗/∂lk. This can be
used to correctly propagate the uncertainty into optimal 3D line in its Plücker
form (see Sec. B in supp. material for detailed derivations). The correctness of
our propagated uncertainty is supported by numerical tests with finite differences
and correlation tests with map accuracy (Fig. 4).
Two-step Refinement. As previously discussed, we can combine the number of
active supports and the level of uncertainty to identify reliable line tracks from
unstable ones. In order to get a scale-invariant metric for the 3D uncertainty,
we rescale it into pixels by multiplying it with the median value of f/d across
the supporting images, where f is the focal length and d the depth of the line
midpoint. Different from conventional practice in bundle adjustment, we propose
to perform the refinement in two steps: an initial full hybrid bundle adjustment
only including the reliable tracks, followed by a fixed-pose refinement of the
unreliable tracks. After each bundle adjustment, we update the active label of
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Fig. 4: Relations between the propagated uncertainty for each track and
its accuracy on ETH3D [85]. Left: For each 3D feature, we plot its 3D error and
uncertainty both in meters. Right: We report precision over each bin sorted w.r.t. to the
3D uncertainty. Points and lines with lower uncertainty tend to have higher precision.

supports and the reliability for each track. This allows us to decouple the pose
optimization from unstable or incorrect line triangulations while keeping the
potential for currently unreliable lines to become reliable in the future.
Integration of Structural Associations. Similarly to [52], we also incorporate
structural associations between points and lines as well as lines and VPs. While
this enables joint optimization with structural constraints, the point-line associ-
ation residual breaks the block-wise nature of the bundle adjustment problem,
leading to slower runtimes. Refer to Sec. C in the supp. mat. for a discussion.

3.3 Hybrid Registration

With the construction and maintenance of the refined hybrid maps, our system
has rich information during camera registration to better pose new images with
the existing 3D structure. The additional line and VP correspondences can not
only help with more accurate estimation of camera poses but also enable more
valid registrations on challenging images with few point correspondences.
Integration of Line and VP Correspondences. Inspired by [52], our camera
registration uses a hybrid RANSAC framework [13]. Given a new image to
be registered, we collect 2D-3D correspondences of points, lines, and VPs by
traversing their matches with the already registered images. We employ six
different minimal solvers from the combination of the hybrid correspondences,
namely the conventional P3P solver [69], the hybrid point-line solvers [45,113]
(including P2P1LL, P1P2LL, P3LL), and optionally, when a VP correspondence
is available, the 2-point and 1-point + 1-line solvers with one VP correspondence.
The VP-based solvers are variants of the known-gravity solvers [43, 45], with the
known direction tilted (check Sec. D in supp. mat for details). Following [13],
the sampling probability and termination criteria for each solver depend on the
corresponding inlier ratios. Both points and lines are included in the scoring and
local optimization with their reprojection errors. After robust estimation, we use
both the number of point and line inliers to determine whether the registration
is successful. In this way, we relax the requirement of abundant inlier points with
the additional line features, which are particularly common in indoor scenes.
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Table 1: Structure-from-Motion results on Hypersim [74] and ETH3D [81].
We report the relative pose AUC and the percentage of valid registration within 5
cm / 5 deg after robust alignment, for both our system (“Hybrid") and COLMAP
(“Point") [79] on SIFT [53] + nearest neighbor and SuperPoint [18] + SuperGlue [76].

Dataset Point Feature Method AUC @ 1°/3°/5°/10° ↑ Valid Reg. ↑

Hypersim
SIFT + NN Point 71.3 82.5 85.0 86.8 93.7%

Hybrid 82.1 86.6 87.6 88.3 93.9%

SP + SG Point 80.1 89.5 91.6 93.2 96.7%
Hybrid 87.0 92.1 93.3 94.1 97.0%

ETH3D
SIFT + NN Point 16.2 26.7 28.1 32.1 46.4%

Hybrid 24.3 34.8 37.4 40.8 59.4%

SP + SG Point 33.0 54.7 61.1 66.4 69.8%
Hybrid 37.3 57.9 63.3 68.8 75.3%

Fig. 5: Some examples of our hybrid maps on Hypersim [74]. Parallel lines from line-VP
associations are colored the same.

Integration of Uncertainty Estimation. With the 3D uncertainty being
propagated to each track, as described in Sec. 3.2, we can further model the
reliability of different point/line correspondences from the map’s perspective.
It is worth noting that a 3D point/line with high 3D uncertainty can still be
valuable for localization in views where its projection is stable. Thus, during
registration, we model the correspondence reliability with the uncertainty of the
reprojection error vector rather than the raw 3D global uncertainty. This requires
an initial pose, which can be estimated by first running a few iterations of the
original uncertainty-free method. After we get the reprojection uncertainty for
each correspondence, we can use it as a reweighting factor in both scoring and
local optimization in the robust estimation framework, which enables the stable
part of the maps to contribute more to the problem. In our experiments, this
uncertainty-aware mechanism achieves consistent accuracy improvement in the
general localization problem on both point-alone and hybrid cases (Table 8).

4 Experiments

Implementation Details. Our system is implemented in C++ with Python
bindings [35]. We use the same hyperparameters for all experiments across
datasets. Parameters for points are identical to COLMAP [79] for fair comparison.
For more details, refer to Sec. E in the supp. material.
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Table 2: Structure-from-Motion results on PhotoTourism [86] from Image
Matching Challenge 2020 [37]. We set the minimum model size to 3 following [37]
for both our system (“Hybrid") and COLMAP (“Point") [79].

Point Feature Method AUC @ 1°/3°/5° @ N

N = 5 N = 10 N = 25

SIFT + NN Point 11.4 / 24.2 / 29.8 29.6 / 49.2 / 56.0 59.9 / 80.3 / 85.9
Hybrid 11.3 / 24.6 / 30.5 31.3 / 51.5 / 58.1 63.3 / 82.4 / 87.5

SP + SG Point 49.0 / 75.9 / 83.8 62.2 / 84.5 / 90.3 70.6 / 88.2 / 92.6
Hybrid 49.2 / 76.2 / 84.1 62.9 / 84.6 / 90.2 72.3 / 89.0 / 93.1

Table 3: Comparison between our full SfM system and the post-refinement method
described in LIMAP [52].

Dataset Method AUC @ 1°/3°/5°/10°↑ Valid Reg. ↑

Hypersim
COLMAP [79] 71.3 / 82.5 / 85.0 / 86.8 93.7%
COLMAP [79] → LIMAP BA [52] 78.6 / 84.2 / 86.5 / 87.3 93.8%
Ours 82.1 / 86.6 / 87.6 / 88.3 93.9%

ETH3D
COLMAP [79] 16.2 / 26.7 / 28.1 / 32.1 46.4%
COLMAP [79] → LIMAP BA [52] 19.2 / 28.3 / 31.1 / 33.8 47.6%
Ours 24.3 / 34.8 / 37.4 / 40.8 59.4%

4.1 Structure-from-Motion

Results on Unstructured Data. We first evaluate our methods on two public
datasets: Hypersim [74] and ETH3D [81]. For Hypersim, our evaluation runs on
the first 8 scenes following [52]. For ETH3D, we use the training set of DSLR
images (13 scenes) while resizing it to a maximum image dimension of 756. Results
are shown in Table 1. Compared to the point-alone baseline COLMAP [79], our
method largely improves the accuracy on highly structured indoor scenes from
Hypersim, and achieves more valid registrations on ETH3D. This holds for
different types of point features [18, 53, 76]. This can be attributed to the strong
geometric constraints from structural features. Fig. 5 shows that our method is
able to incrementally reconstruct richer maps with structural relations.

To verify that our method does not degrade the performance on scenes without
abundant presence of distinctive line features, we test our SfM pipeline on the
validation split (3 scenes) from the Image Matching Benchmark 2020 [37]. Table 2
shows that despite the rich textures in the test set, our method achieves promising
improvements on outdoor scenes over COLMAP [79], which remains the widely
used backend in the benchmark [37]. Qualitative results in supp. further show
that our method achieves reasonable reconstruction from as few as 5 images.
Comparison to Post-Refinement in [52] To better study the effectiveness
of building a full SfM system, we compare our method with the hybrid post-
refinement method proposed in [52] with global line triangulation. As shown in
Table 3, the post-refinement method falls behind on accuracy even when most
images are successfully registered, and cannot recover from the registration failure
of COLMAP [79] (e.g . on ETH3D). Our method, on the contrary, is able to
achieve more valid registrations in such challenging scenarios.
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Table 4: Studies on behaviors of SLAM pipelines [62,84] and our SfM method under
different sampling rate on fr1_desk from [89]. While SLAM methods achieve superior
results on dense frames, they suffer from low frame rates due to strong local assumptions.

Method ATE RMSE

30 FPS 15 FPS 6 FPS 3 FPS

ORB-SLAM [62] 1.27 1.51 7.42 N/A
Structure PLP-SLAM [84] 1.64 2.36 3.88 N/A
Ours 1.39 1.37 1.45 1.80

ORB-SLAM [62] S. PLP-SLAM [84] COLMAP [79] Ours

Fig. 6: Map visualization with two SLAM methods [62,84] on sequential data from [89].
Our method is able to reconstruct much richer and more complete 3D maps, especially
compared to Structure PLP-SLAM [84] that also integrates line features.

Discussions on Sequential Data. We further present some studies with two
popular SLAM systems: ORB-SLAM [62] and Structure PLP-SLAM [84], the
latter of which also integrates line features into its pipeline. As shown in Table 4,
while SLAM methods can achieve superior results on video sequences, it is
constrained to sequential data and cannot deal with sparsely distributed input
images. Moreover, in the qualitative results in Fig. 6, we show that our line
maps are much richer and more complete compared to the top-performing SLAM
counterpart [84], further highlighting the advantages of our general SfM pipeline.

4.2 Ablation Studies and More Insights

Mapping. We first study our incremental line triangulation module in terms of
line reconstruction quality. Specifically, we use the proposed module to progres-
sively triangulate 2D images with ground truth poses on Hypersim [74], which can
be directly compared to the global triangulation described in [52]. Table 5 shows
the results. Our method achieves comparable completeness and accuracy with
the global methods. This is attributed to the carefully designed triangulation
Table 5: Quantitative results of line reconstruction on Hypersim [74]. Following
the same evaluation protocols, our incremental triangulator reconstructs line maps of
comparable quality with the global method in [52]. By default [52] uses top 10 matches.

Mapper R1 R5 R10 P1 P5 P10 # lines # supports

Global (top 10 matches) [52] 133.4 231.9 258.4 77.2 89.4 93.2 731.9 15.4 / 22.7

Global (raw matches) [52] 81.2 230.1 287.3 71.7 84.7 90.2 657.3 17.9 / 22.1
Incremental (raw matches) 98.8 260.2 345.1 68.9 80.5 85.3 929.2 14.4 / 15.6
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Table 6: Ablation studies on different proposed components from mapping
and refinement. Numbers are reported on Hypersim [74].

BA Ablations AUC @ 1°/3°/5°/10° ↑

Point (COLMAP) [79] 71.3 / 82.5 / 85.0 / 86.8
+ hybrid point-line BA without caching [52] 75.9 / 83.6 / 86.0 / 87.1
+ inactive support caching 79.2 / 84.9 / 86.5 / 87.4
+ two-step refinement 80.3 / 85.6 / 86.8 / 87.8
+ retriangulation 80.8 / 85.9 / 87.0 / 87.9
+ VP associations 81.2 / 86.1 / 87.2 / 88.0

Table 7: Ablation studies on our registration modules in SfM. Numbers are
reported on both Hypersim [74] and ETH3D [81].

Dataset Method AUC @ 1°/3°/5°/10°↑ Valid Reg. ↑

Hypersim
Point-based registration [25,79] 80.8 / 85.9 / 87.0 / 87.9 93.8%
+ hybrid registration 81.5 / 86.4 / 87.4 / 88.2 93.8%
+ uncertainty for registration 81.7 / 86.5 / 87.6 / 88.3 93.9%

ETH3D
Point-based registration [25,79] 19.2 / 28.0 / 30.6 / 33.0 47.6%
+ hybrid registration 24.2 / 34.4 / 37.0 / 39.2 59.0%
+ uncertainty for registration 24.3 / 34.7 / 37.6 / 40.1 59.4%

and maintenance strategies. In particular, thanks to the “complete” strategy
inspired by [79], our incremental triangulator achieves reasonable track length
while removing the need to get all the posed images beforehand.
Refinement. We further study the proposed refinement strategy together with
map maintenance. We perform ablation studies on different mechanisms with the
original point-alone registration from COLMAP [79]. Results in Table 6 show that
each component contributes to the improvement. In particular, combining the
inactive support caching and the two-step refinement method makes it possible
to keep unreliable supports and tracks without corrupting the pose optimization,
which speeds up the mapping process by avoiding unnecessary deletion at the
early stage of track building. We include visual illustrations in Sec. F of supp.
Registration. Lastly, we study the effects of our proposed hybrid registration
module with additional line features. Table 7 shows that the hybrid robust
estimator consistently improves the accuracy and robustness on two different
datasets, while uncertainty-aware reweighting can further improve its perfor-

Table 8: Results of our uncertainty-aware localization module on Cambridge
[40] and 7Scenes [83] compared with state-of-the-art point-alone [75] and hybrid [52]
methods. We report median errors (cm / deg) and recall on 3cm / 3deg and 5cm / 5deg.

Dataset Method Point Point + Line

Med. error ↓ Recall ↑ Med. error ↓ Recall ↑

Cambridge w/o. uncertainty 7.1 / 0.13 24.3 / 43.1 7.0 / 0.13 25.4 / 45.3
w. uncertainty 6.4 / 0.12 27.4 / 48.0 6.3 / 0.12 29.0 / 48.6

7Scenes w/o. uncertainty 3.1 / 1.03 51.1 / 76.0 3.1 / 1.01 52.7 / 77.7
w. uncertainty 2.9 / 0.95 55.6 / 79.0 2.8 / 0.95 56.5 / 79.5
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Images Full map Filtered map w/ high uncertainty Reliable features

Fig. 7: Visualization of reprojected map uncertainty on fire from 7Scenes [83].
First row: 3D points. Second row: 3D lines. The reprojected uncertainty is a good
indicator for identifying unstable reprojection of 3D maps with a given viewpoint.

Fig. 8: Hybrid reconstruction on Gendarmenmarkt (1,463 images) from [101].

mance. Moreover, Table 8 shows results on public localization benchmarks where
our uncertainty-aware localization consistently improves upon state-of-the-art
practices under both point-alone [75] and hybrid [52] setup. Being able to iden-
tify the noisy features from the map (as in Fig. 7), our method increases the
importance of stable 2D-3D correspondences, which can be used as a general
plug-in feature in any modern localization system.
Scalability. Since our method shares a similar design as COLMAP [79], it
is scalable to large-scale scenes with similar asymptotic complexity when the
structural associations are disabled, while exhibiting 1-3x overhead for processing
additional line features in both 2D extraction/matching and hybrid bundle
adjustment. Fig. 8 shows an example of our reconstruction on 1DSfM dataset [101].

5 Conclusion

In this paper, we present a comprehensive SfM system that, in addition to
points, leverages lines and their structural relations. We improve over all of
the three main steps: triangulation, refinement, and registration. Experiments
and ablation studies show that our method is consistently more robust and
accurate compared to the widely used point-based pipeline. Additionally, our
analytical uncertainty modeling benefits the localization task, as demonstrated
on several public localization benchmarks. Future improvements include joint
(faster) point/line detection and matching and more principled 2D uncertainty
modeling. Acknowledgements. This work has been supported by Innosuisse
funding (Grant No. 100.567 IP-ICT). V. Larsson was supported by ELLIIT and
the Swedish Research Council (Grant No. 2023-05424).
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