Evaluate w.r.t. a Point Cloud
- class limap.evaluation.PointCloudEvaluator
The evaluator for line maps with respect to a GT point cloud (using a K-D Tree).
- Build(self: _limap._evaluation.PointCloudEvaluator) None
Build the indexes of the K-D Tree
- ComputeDistLine(self: _limap._evaluation.PointCloudEvaluator, line: _limap._base.Line3d, n_samples: int = 1000) float
Compute the distance for a set of uniformly sampled points along the line
- ComputeDistPoint(self: _limap._evaluation.PointCloudEvaluator, arg0: numpy.ndarray[numpy.float64[3, 1]]) float
Compute the distance from a query point to the point cloud
:param
np.array
of shape: The query point :typenp.array
of shape: 3,- Returns:
The distance from the point to the GT point cloud
- Return type:
float
- ComputeDistsforEachPoint(self: _limap._evaluation.PointCloudEvaluator, arg0: List[_limap._base.Line3d]) List[float]
- ComputeDistsforEachPoint_KDTree(self: _limap._evaluation.PointCloudEvaluator, arg0: List[_limap._base.Line3d]) List[float]
- ComputeInlierRatio(self: _limap._evaluation.PointCloudEvaluator, line: _limap._base.Line3d, threshold: float, n_samples: int = 1000) float
Compute the percentage of the line lying with a certain threshold to the point cloud
- ComputeInlierSegs(self: _limap._evaluation.PointCloudEvaluator, lines: List[_limap._base.Line3d], threshold: float, n_samples: int = 1000) List[_limap._base.Line3d]
Compute the inlier parts of the lines that are within a certain threshold to the point cloud, for visualization.
- Parameters:
lines (list[
limap.base.Line3d
]) – Input 3D line segmentsthreshold (float) – threshold
n_samples (int) – number of samples (default = 1000)
- Returns:
Inlier parts of all the lines, useful for visualization
- Return type:
list[
limap.base.Line3d
]
- ComputeOutlierSegs(self: _limap._evaluation.PointCloudEvaluator, lines: List[_limap._base.Line3d], threshold: float, n_samples: int = 1000) List[_limap._base.Line3d]
Compute the outlier parts of the lines that are at least a certain threshold far away from the point cloud, for visualization.
- Parameters:
lines (list[
limap.base.Line3d
]) – Input 3D line segmentsthreshold (float) – threshold
n_samples (int) – number of samples (default = 1000)
- Returns:
Outlier parts of all the lines, useful for visualization
- Return type:
list[
limap.base.Line3d
]
- Load(self: _limap._evaluation.PointCloudEvaluator, arg0: str) None
Read the pre-built K-D Tree from a file
- Parameters:
filename (str) – The file to read from
- Save(self: _limap._evaluation.PointCloudEvaluator, arg0: str) None
Save the built K-D Tree into a file
- Parameters:
filename (str) – The file to write to
- __init__(*args, **kwargs)
Overloaded function.
__init__(self: _limap._evaluation.PointCloudEvaluator) -> None
Default constructor
__init__(self: _limap._evaluation.PointCloudEvaluator, arg0: List[numpy.ndarray[numpy.float64[3, 1]]]) -> None
Constructor from list[
np.array
] of shape (3,)__init__(self: _limap._evaluation.PointCloudEvaluator, arg0: numpy.ndarray[numpy.float64[m, n]]) -> None
Constructor from
np.array
of shape (N, 3)