Main function: line reconstruction given depths
- limap.runners.line_fitnmerge.fit_3d_segs(all_2d_segs, imagecols, depths, fitting_config)
Fit 3D line segments over points produced by depth unprojection
- Parameters:
all_2d_segs (dict[int ->
np.adarray
]) – All the 2D line segments for each imageimagecols (
limap.base.ImageCollection
) – The image collection of all images of interestdepths (dict[int ->
CustomizedDepthReader
], whereCustomizedDepthReader
inheritslimap.base.depth_reader_base.BaseDepthReader
) – The depth map readers for each imagefitting_config (dict) – Configuration, fields refer to
cfgs/examples/fitting_3Dline.yaml
- Returns:
for each image, output a list of
np.array
pair, representing two endpoints- Return type:
output (dict[int -> list[(
np.array
,np.array
)]])
- limap.runners.line_fitnmerge.fit_3d_segs_with_points3d(all_2d_segs, imagecols, p3d_reader, fitting_config, inloc_dataset=None)
Fit 3D line segments over a set of 3D points
- Parameters:
all_2d_segs (dict[int ->
np.adarray
]) – All the 2D line segments for each imageimagecols (
limap.base.ImageCollection
) – The image collection of all images of interestp3d_reader (dict[int ->
CustomizedP3DReader
], whereCustomizedP3DReader
inheritslimap.base.p3d_reader_base.BaseP3DReader
) – The point cloud readers for each imagefitting_config (dict) – Configuration, fields refer to
cfgs/examples/fitting_3Dline.yaml
- Returns:
for each image, output a list of
np.array
pair, representing two endpoints- Return type:
output (dict[int -> list[(
np.array
,np.array
)]])
- limap.runners.line_fitnmerge.line_fitnmerge(cfg, imagecols, depths, neighbors=None, ranges=None)
Line reconstruction over multi-view RGB images given depths
- Parameters:
cfg (dict) – Configuration. Fields refer to
cfgs/fitnmerge/default.yaml
as an exampleimagecols (
limap.base.ImageCollection
) – The image collection corresponding to all the images of interestdepths (dict[int ->
CustomizedDepthReader
], whereCustomizedDepthReader
inheritslimap.base.depth_reader_base.BaseDepthReader
) – The depth map readers for each imageneighbors (dict[int -> list[int]], optional) – visual neighbors for each image. By default we compute neighbor information from the covisibility of COLMAP triangulation.
ranges (pair of
np.array
each of shape (3,), optional) – robust 3D ranges for the scene. By default we compute range information from the COLMAP triangulation.
- Returns:
list of output 3D line tracks
- Return type:
list[
limap.base.LineTrack
]
- limap.runners.line_fitnmerge.line_fitting_with_3Dpoints(cfg, imagecols, p3d_readers, inloc_read_transformations=False)
Line reconstruction over multi-view images with its point cloud
- Parameters:
cfg (dict) – Configuration. Fields refer to
cfgs/fitnmerge/default.yaml
as an exampleimagecols (
limap.base.ImageCollection
) – The image collection corresponding to all the images of interestp3d_reader (dict[int ->
CustomizedP3DReader
], whereCustomizedP3DReader
inheritslimap.base.p3d_reader_base.BaseP3DReader
) – The point cloud readers for each imageneighbors (dict[int -> list[int]], optional) – visual neighbors for each image. By default we compute neighbor information from the covisibility of COLMAP triangulation.
ranges (pair of
np.array
each of shape (3,), optional) – robust 3D ranges for the scene. By default we compute range information from the COLMAP triangulation.
- Returns:
list of output 3D line tracks
- Return type:
list[
limap.base.LineTrack
]